Can the Assuming function be used with ContourPlot or DensityPlot?Projection of curve 3D (x,y,z) on the x-y...

What am I? I am in theaters and computer programs

Contradiction with Banach Fixed Point Theorem

How do ISS astronauts "get their stripes"?

You'll find me clean when something is full

Closure of presentable objects under finite limits

Can you 'upgrade' leather armor to studded leather armor without purchasing the new armor directly?

Why do members of Congress in committee hearings ask witnesses the same question multiple times?

What is the difference between ashamed and shamed?

Auto Insert date into Notepad

Why zero tolerance on nudity in space?

How to add multiple differently colored borders around a node?

Multiplication via squaring and addition

Reason Why Dimensional Travelling Would be Restricted

Book where the good guy lives backwards through time and the bad guy lives forward

I encountered my boss during an on-site interview at another company. Should I bring it up when seeing him next time?

Is my plan for fixing my water heater leak bad?

Are small insurances worth it

Where is this triangular-shaped space station from?

What is the difference between throw e and throw new Exception(e)?

CBP Reminds Travelers to Allow 72 Hours for ESTA. Why?

What to do when being responsible for data protection in your lab, yet advice is ignored?

How to properly claim credit for peer review?

When was drinking water recognized as crucial in marathon running?

How to deny access to SQL Server to certain login over SSMS, but allow over .Net SqlClient Data Provider



Can the Assuming function be used with ContourPlot or DensityPlot?


Projection of curve 3D (x,y,z) on the x-y planeStochastic Approximation and Simulation using Running MedianFind solutions of equation involving Bessel functionsHow to combine several plots with this special alignment?Using Assumptions in Expressions that Evaluate to be Elliptic IntegralsSynchrotron Radiation and ListDensityPlotIntegration result with incomplete beta functionHow to properly plot the singularities of a non-trivial phase profile with DensityPlot?Plotting a switching functionPlotting an implicitly defined function













2












$begingroup$


I'm new to Mathematica, and for most purposes the program has served me well and been straightforward. However, I'm hitting a snag while trying to create a contour plot for the distribution function



$qquad f(x,y) = (x,y)^{p-1}/(alpha + beta,x + gamma,y + delta,x,y)^{p + q}$



Notice $x,y$ are variables, and $alpha,beta,gamma,delta, p,$ and $q$ are constants. I need to set a list of assumptions for constants in the function, but my attempts have been fruitless. Every command yields a graph without an image.



I first tried assigning my function with its assumptions by:



Assuming[
{x > 0, y > 0, p > 0, α > 0, β > 0, γ > 0, δ > 0},
f[x_, y_] :=
(x*y)^(p - 1)/(α + β*x + γ*y + δ*x*y)^(p + q)]


After the assignment, I tried plotting with ContourPlot and DensityPlot.



I'll provide just the ContourPlot expression below because not much changes across them:



ContourPlot[f[x, y], {x, 0, 200}, {y, 0, 200}]


In regards to the ContourPlot code, I've changed the domain to both larger and smaller numbers to no avail. Neither ContourPlot nor DensityPlot provides an image. I then try the code without assigning the function beforehand, while including ContourPlot within the Assuming command:



Assuming[
{α > 0, β > 0, γ > 0, δ > 0, p > 0},
ContourPlot[(x*y)^(p - 1)/(α + β*x + γ*y + δ*x*y)^(p + q), {x, 0, 3}, {y, 0, 3}]]


I know this equation should produce some sort of image since it's simply a type of truncated distribution function. I believe I've narrowed down the issue to one of the following: Mathematica does not allow assumptions to be used with ContourPlot/DensityPlot, the distribution function is too complicated for Mathematica, or my user error is hindering me. My next step is to try creating different plots on the same graph for various pre-determined values of the parameters.



Any help is much appreciated. As previously mentioned, I'm not very experienced with Mathematica, so I'm more than willing to learn something new or help further explain my goals.










share|improve this question









New contributor




Banks Osborne is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$








  • 1




    $begingroup$
    MemberQ[Keys[Options[ContourPlot]], Assumptions] returns False, so you can't use assumptions on ContourPlot[]. Your more pressing problem is that you have neglected to provide concrete values for your parameters, so there really is nothing for the plotter to do. (Also, xy and x y are very different things, which contributes to why you can't plot.)
    $endgroup$
    – J. M. is computer-less
    20 hours ago










  • $begingroup$
    That makes sense. I'll stop trying to use Assumptions with ContourPlot now. I don't know how I didn't catch myself sooner, but I now realize I had typed xy instead of x*y. This actually fixes another, unrelated issue I was having with the code. That said, thank you so much for your help!
    $endgroup$
    – Banks Osborne
    20 hours ago






  • 1




    $begingroup$
    Shouldn't (xy)^(p - 1)/(α + βx + γy + δxy)^(p + q)] be (x y)^(p - 1)/(α + β x + γ y + δ x y)^(p + q)] The additional spaces make a big difference.
    $endgroup$
    – m_goldberg
    19 hours ago












  • $begingroup$
    Yes, was thinking the same thing, otherwise Mathematica thinks each term is one variable for example xy and not the product of these.
    $endgroup$
    – mjw
    19 hours ago










  • $begingroup$
    You also need to set the constants to some values to plot your function. To take a simpler example, to plot Exp[-x^2 / (2 sigma^2)] / (sigma Sqrt[2 pi], you would need to specify sigma.
    $endgroup$
    – mjw
    18 hours ago
















2












$begingroup$


I'm new to Mathematica, and for most purposes the program has served me well and been straightforward. However, I'm hitting a snag while trying to create a contour plot for the distribution function



$qquad f(x,y) = (x,y)^{p-1}/(alpha + beta,x + gamma,y + delta,x,y)^{p + q}$



Notice $x,y$ are variables, and $alpha,beta,gamma,delta, p,$ and $q$ are constants. I need to set a list of assumptions for constants in the function, but my attempts have been fruitless. Every command yields a graph without an image.



I first tried assigning my function with its assumptions by:



Assuming[
{x > 0, y > 0, p > 0, α > 0, β > 0, γ > 0, δ > 0},
f[x_, y_] :=
(x*y)^(p - 1)/(α + β*x + γ*y + δ*x*y)^(p + q)]


After the assignment, I tried plotting with ContourPlot and DensityPlot.



I'll provide just the ContourPlot expression below because not much changes across them:



ContourPlot[f[x, y], {x, 0, 200}, {y, 0, 200}]


In regards to the ContourPlot code, I've changed the domain to both larger and smaller numbers to no avail. Neither ContourPlot nor DensityPlot provides an image. I then try the code without assigning the function beforehand, while including ContourPlot within the Assuming command:



Assuming[
{α > 0, β > 0, γ > 0, δ > 0, p > 0},
ContourPlot[(x*y)^(p - 1)/(α + β*x + γ*y + δ*x*y)^(p + q), {x, 0, 3}, {y, 0, 3}]]


I know this equation should produce some sort of image since it's simply a type of truncated distribution function. I believe I've narrowed down the issue to one of the following: Mathematica does not allow assumptions to be used with ContourPlot/DensityPlot, the distribution function is too complicated for Mathematica, or my user error is hindering me. My next step is to try creating different plots on the same graph for various pre-determined values of the parameters.



Any help is much appreciated. As previously mentioned, I'm not very experienced with Mathematica, so I'm more than willing to learn something new or help further explain my goals.










share|improve this question









New contributor




Banks Osborne is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$








  • 1




    $begingroup$
    MemberQ[Keys[Options[ContourPlot]], Assumptions] returns False, so you can't use assumptions on ContourPlot[]. Your more pressing problem is that you have neglected to provide concrete values for your parameters, so there really is nothing for the plotter to do. (Also, xy and x y are very different things, which contributes to why you can't plot.)
    $endgroup$
    – J. M. is computer-less
    20 hours ago










  • $begingroup$
    That makes sense. I'll stop trying to use Assumptions with ContourPlot now. I don't know how I didn't catch myself sooner, but I now realize I had typed xy instead of x*y. This actually fixes another, unrelated issue I was having with the code. That said, thank you so much for your help!
    $endgroup$
    – Banks Osborne
    20 hours ago






  • 1




    $begingroup$
    Shouldn't (xy)^(p - 1)/(α + βx + γy + δxy)^(p + q)] be (x y)^(p - 1)/(α + β x + γ y + δ x y)^(p + q)] The additional spaces make a big difference.
    $endgroup$
    – m_goldberg
    19 hours ago












  • $begingroup$
    Yes, was thinking the same thing, otherwise Mathematica thinks each term is one variable for example xy and not the product of these.
    $endgroup$
    – mjw
    19 hours ago










  • $begingroup$
    You also need to set the constants to some values to plot your function. To take a simpler example, to plot Exp[-x^2 / (2 sigma^2)] / (sigma Sqrt[2 pi], you would need to specify sigma.
    $endgroup$
    – mjw
    18 hours ago














2












2








2





$begingroup$


I'm new to Mathematica, and for most purposes the program has served me well and been straightforward. However, I'm hitting a snag while trying to create a contour plot for the distribution function



$qquad f(x,y) = (x,y)^{p-1}/(alpha + beta,x + gamma,y + delta,x,y)^{p + q}$



Notice $x,y$ are variables, and $alpha,beta,gamma,delta, p,$ and $q$ are constants. I need to set a list of assumptions for constants in the function, but my attempts have been fruitless. Every command yields a graph without an image.



I first tried assigning my function with its assumptions by:



Assuming[
{x > 0, y > 0, p > 0, α > 0, β > 0, γ > 0, δ > 0},
f[x_, y_] :=
(x*y)^(p - 1)/(α + β*x + γ*y + δ*x*y)^(p + q)]


After the assignment, I tried plotting with ContourPlot and DensityPlot.



I'll provide just the ContourPlot expression below because not much changes across them:



ContourPlot[f[x, y], {x, 0, 200}, {y, 0, 200}]


In regards to the ContourPlot code, I've changed the domain to both larger and smaller numbers to no avail. Neither ContourPlot nor DensityPlot provides an image. I then try the code without assigning the function beforehand, while including ContourPlot within the Assuming command:



Assuming[
{α > 0, β > 0, γ > 0, δ > 0, p > 0},
ContourPlot[(x*y)^(p - 1)/(α + β*x + γ*y + δ*x*y)^(p + q), {x, 0, 3}, {y, 0, 3}]]


I know this equation should produce some sort of image since it's simply a type of truncated distribution function. I believe I've narrowed down the issue to one of the following: Mathematica does not allow assumptions to be used with ContourPlot/DensityPlot, the distribution function is too complicated for Mathematica, or my user error is hindering me. My next step is to try creating different plots on the same graph for various pre-determined values of the parameters.



Any help is much appreciated. As previously mentioned, I'm not very experienced with Mathematica, so I'm more than willing to learn something new or help further explain my goals.










share|improve this question









New contributor




Banks Osborne is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$




I'm new to Mathematica, and for most purposes the program has served me well and been straightforward. However, I'm hitting a snag while trying to create a contour plot for the distribution function



$qquad f(x,y) = (x,y)^{p-1}/(alpha + beta,x + gamma,y + delta,x,y)^{p + q}$



Notice $x,y$ are variables, and $alpha,beta,gamma,delta, p,$ and $q$ are constants. I need to set a list of assumptions for constants in the function, but my attempts have been fruitless. Every command yields a graph without an image.



I first tried assigning my function with its assumptions by:



Assuming[
{x > 0, y > 0, p > 0, α > 0, β > 0, γ > 0, δ > 0},
f[x_, y_] :=
(x*y)^(p - 1)/(α + β*x + γ*y + δ*x*y)^(p + q)]


After the assignment, I tried plotting with ContourPlot and DensityPlot.



I'll provide just the ContourPlot expression below because not much changes across them:



ContourPlot[f[x, y], {x, 0, 200}, {y, 0, 200}]


In regards to the ContourPlot code, I've changed the domain to both larger and smaller numbers to no avail. Neither ContourPlot nor DensityPlot provides an image. I then try the code without assigning the function beforehand, while including ContourPlot within the Assuming command:



Assuming[
{α > 0, β > 0, γ > 0, δ > 0, p > 0},
ContourPlot[(x*y)^(p - 1)/(α + β*x + γ*y + δ*x*y)^(p + q), {x, 0, 3}, {y, 0, 3}]]


I know this equation should produce some sort of image since it's simply a type of truncated distribution function. I believe I've narrowed down the issue to one of the following: Mathematica does not allow assumptions to be used with ContourPlot/DensityPlot, the distribution function is too complicated for Mathematica, or my user error is hindering me. My next step is to try creating different plots on the same graph for various pre-determined values of the parameters.



Any help is much appreciated. As previously mentioned, I'm not very experienced with Mathematica, so I'm more than willing to learn something new or help further explain my goals.







plotting assumptions






share|improve this question









New contributor




Banks Osborne is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|improve this question









New contributor




Banks Osborne is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|improve this question




share|improve this question








edited 4 hours ago







Banks Osborne













New contributor




Banks Osborne is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked 20 hours ago









Banks OsborneBanks Osborne

112




112




New contributor




Banks Osborne is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





Banks Osborne is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






Banks Osborne is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.








  • 1




    $begingroup$
    MemberQ[Keys[Options[ContourPlot]], Assumptions] returns False, so you can't use assumptions on ContourPlot[]. Your more pressing problem is that you have neglected to provide concrete values for your parameters, so there really is nothing for the plotter to do. (Also, xy and x y are very different things, which contributes to why you can't plot.)
    $endgroup$
    – J. M. is computer-less
    20 hours ago










  • $begingroup$
    That makes sense. I'll stop trying to use Assumptions with ContourPlot now. I don't know how I didn't catch myself sooner, but I now realize I had typed xy instead of x*y. This actually fixes another, unrelated issue I was having with the code. That said, thank you so much for your help!
    $endgroup$
    – Banks Osborne
    20 hours ago






  • 1




    $begingroup$
    Shouldn't (xy)^(p - 1)/(α + βx + γy + δxy)^(p + q)] be (x y)^(p - 1)/(α + β x + γ y + δ x y)^(p + q)] The additional spaces make a big difference.
    $endgroup$
    – m_goldberg
    19 hours ago












  • $begingroup$
    Yes, was thinking the same thing, otherwise Mathematica thinks each term is one variable for example xy and not the product of these.
    $endgroup$
    – mjw
    19 hours ago










  • $begingroup$
    You also need to set the constants to some values to plot your function. To take a simpler example, to plot Exp[-x^2 / (2 sigma^2)] / (sigma Sqrt[2 pi], you would need to specify sigma.
    $endgroup$
    – mjw
    18 hours ago














  • 1




    $begingroup$
    MemberQ[Keys[Options[ContourPlot]], Assumptions] returns False, so you can't use assumptions on ContourPlot[]. Your more pressing problem is that you have neglected to provide concrete values for your parameters, so there really is nothing for the plotter to do. (Also, xy and x y are very different things, which contributes to why you can't plot.)
    $endgroup$
    – J. M. is computer-less
    20 hours ago










  • $begingroup$
    That makes sense. I'll stop trying to use Assumptions with ContourPlot now. I don't know how I didn't catch myself sooner, but I now realize I had typed xy instead of x*y. This actually fixes another, unrelated issue I was having with the code. That said, thank you so much for your help!
    $endgroup$
    – Banks Osborne
    20 hours ago






  • 1




    $begingroup$
    Shouldn't (xy)^(p - 1)/(α + βx + γy + δxy)^(p + q)] be (x y)^(p - 1)/(α + β x + γ y + δ x y)^(p + q)] The additional spaces make a big difference.
    $endgroup$
    – m_goldberg
    19 hours ago












  • $begingroup$
    Yes, was thinking the same thing, otherwise Mathematica thinks each term is one variable for example xy and not the product of these.
    $endgroup$
    – mjw
    19 hours ago










  • $begingroup$
    You also need to set the constants to some values to plot your function. To take a simpler example, to plot Exp[-x^2 / (2 sigma^2)] / (sigma Sqrt[2 pi], you would need to specify sigma.
    $endgroup$
    – mjw
    18 hours ago








1




1




$begingroup$
MemberQ[Keys[Options[ContourPlot]], Assumptions] returns False, so you can't use assumptions on ContourPlot[]. Your more pressing problem is that you have neglected to provide concrete values for your parameters, so there really is nothing for the plotter to do. (Also, xy and x y are very different things, which contributes to why you can't plot.)
$endgroup$
– J. M. is computer-less
20 hours ago




$begingroup$
MemberQ[Keys[Options[ContourPlot]], Assumptions] returns False, so you can't use assumptions on ContourPlot[]. Your more pressing problem is that you have neglected to provide concrete values for your parameters, so there really is nothing for the plotter to do. (Also, xy and x y are very different things, which contributes to why you can't plot.)
$endgroup$
– J. M. is computer-less
20 hours ago












$begingroup$
That makes sense. I'll stop trying to use Assumptions with ContourPlot now. I don't know how I didn't catch myself sooner, but I now realize I had typed xy instead of x*y. This actually fixes another, unrelated issue I was having with the code. That said, thank you so much for your help!
$endgroup$
– Banks Osborne
20 hours ago




$begingroup$
That makes sense. I'll stop trying to use Assumptions with ContourPlot now. I don't know how I didn't catch myself sooner, but I now realize I had typed xy instead of x*y. This actually fixes another, unrelated issue I was having with the code. That said, thank you so much for your help!
$endgroup$
– Banks Osborne
20 hours ago




1




1




$begingroup$
Shouldn't (xy)^(p - 1)/(α + βx + γy + δxy)^(p + q)] be (x y)^(p - 1)/(α + β x + γ y + δ x y)^(p + q)] The additional spaces make a big difference.
$endgroup$
– m_goldberg
19 hours ago






$begingroup$
Shouldn't (xy)^(p - 1)/(α + βx + γy + δxy)^(p + q)] be (x y)^(p - 1)/(α + β x + γ y + δ x y)^(p + q)] The additional spaces make a big difference.
$endgroup$
– m_goldberg
19 hours ago














$begingroup$
Yes, was thinking the same thing, otherwise Mathematica thinks each term is one variable for example xy and not the product of these.
$endgroup$
– mjw
19 hours ago




$begingroup$
Yes, was thinking the same thing, otherwise Mathematica thinks each term is one variable for example xy and not the product of these.
$endgroup$
– mjw
19 hours ago












$begingroup$
You also need to set the constants to some values to plot your function. To take a simpler example, to plot Exp[-x^2 / (2 sigma^2)] / (sigma Sqrt[2 pi], you would need to specify sigma.
$endgroup$
– mjw
18 hours ago




$begingroup$
You also need to set the constants to some values to plot your function. To take a simpler example, to plot Exp[-x^2 / (2 sigma^2)] / (sigma Sqrt[2 pi], you would need to specify sigma.
$endgroup$
– mjw
18 hours ago










2 Answers
2






active

oldest

votes


















4












$begingroup$

As has been said in the comments to your question, because all plotting functions are based on strictly numerical calculations, you must give definite values to all six parameters. If you are in the position where you have no good idea how the function behaves as the parameters vary, you can explore the situation with Manipulate. Here is an example.



f[α_, β_, γ_, δ_, p_, q_][x_, y_] := (x y)^(p - 1)/(α + β x + γ y + δ x y)^(p + q)

With[{ϵ = .0001},
Manipulate[
ContourPlot[f[α, β, γ, δ, p, q][x, y], {x, 0, 2}, {y, 0, 2}],
{α, ϵ, 1, Appearance -> "Labeled"},
{β, ϵ, 1, Appearance -> "Labeled"},
{γ, ϵ, 1, Appearance -> "Labeled"},
{δ, ϵ, 1, Appearance -> "Labeled"},
{p, 1, 4, 1, Appearance -> "Labeled"},
{q, 1, 4, 1, Appearance -> "Labeled"}]]


demo



Note: I have no clue about what comprise good ranges for either the parameters or the variables. I made some simple assumptions about them. You should revise these assumptions to suit your needs.






share|improve this answer











$endgroup$













  • $begingroup$
    It looks like you separated out the "constants" and the "variables" in your function definition. Is there any significance to that other than convenience of notation? Where is this documented (just did a quick search for defining functions and did not see it)? Thanks!
    $endgroup$
    – mjw
    17 hours ago










  • $begingroup$
    @mjw, this tutorial might be of interest. It is not necessary to separate parameters and variables in this way, but it is definitely convenient.
    $endgroup$
    – J. M. is computer-less
    17 hours ago










  • $begingroup$
    @mjw. It is documented as J.M. points out. A higher level reference which a list of links about topics concerning functions is this one, which included the link given by J.M.
    $endgroup$
    – m_goldberg
    17 hours ago












  • $begingroup$
    @mjw. I use this style more for reasons of clarity than convenience.
    $endgroup$
    – m_goldberg
    17 hours ago










  • $begingroup$
    @J.M. Thank you! So what is f[a_,b_][x_,y_], a function? Or a function of a function? I guess that I understand that now the head of the expression is f[a,b].
    $endgroup$
    – mjw
    17 hours ago



















0












$begingroup$

One way is to simply set the constants as variables in your function definition, and then set them to the values you want when you call the function:



f[x_, y_, α_, β_, γ_, δ_, p_, q_] := (x y)^(p -1)/(α + β x + γ y + δ x y)^(p + q);

ContourPlot[f[x, y, 2, 3, 4, 5, .5, .5], {x, 0, 200}, {y, 0, 200}]


enter image description here






share|improve this answer











$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "387"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: false,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: null,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });






    Banks Osborne is a new contributor. Be nice, and check out our Code of Conduct.










    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f192559%2fcan-the-assuming-function-be-used-with-contourplot-or-densityplot%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    4












    $begingroup$

    As has been said in the comments to your question, because all plotting functions are based on strictly numerical calculations, you must give definite values to all six parameters. If you are in the position where you have no good idea how the function behaves as the parameters vary, you can explore the situation with Manipulate. Here is an example.



    f[α_, β_, γ_, δ_, p_, q_][x_, y_] := (x y)^(p - 1)/(α + β x + γ y + δ x y)^(p + q)

    With[{ϵ = .0001},
    Manipulate[
    ContourPlot[f[α, β, γ, δ, p, q][x, y], {x, 0, 2}, {y, 0, 2}],
    {α, ϵ, 1, Appearance -> "Labeled"},
    {β, ϵ, 1, Appearance -> "Labeled"},
    {γ, ϵ, 1, Appearance -> "Labeled"},
    {δ, ϵ, 1, Appearance -> "Labeled"},
    {p, 1, 4, 1, Appearance -> "Labeled"},
    {q, 1, 4, 1, Appearance -> "Labeled"}]]


    demo



    Note: I have no clue about what comprise good ranges for either the parameters or the variables. I made some simple assumptions about them. You should revise these assumptions to suit your needs.






    share|improve this answer











    $endgroup$













    • $begingroup$
      It looks like you separated out the "constants" and the "variables" in your function definition. Is there any significance to that other than convenience of notation? Where is this documented (just did a quick search for defining functions and did not see it)? Thanks!
      $endgroup$
      – mjw
      17 hours ago










    • $begingroup$
      @mjw, this tutorial might be of interest. It is not necessary to separate parameters and variables in this way, but it is definitely convenient.
      $endgroup$
      – J. M. is computer-less
      17 hours ago










    • $begingroup$
      @mjw. It is documented as J.M. points out. A higher level reference which a list of links about topics concerning functions is this one, which included the link given by J.M.
      $endgroup$
      – m_goldberg
      17 hours ago












    • $begingroup$
      @mjw. I use this style more for reasons of clarity than convenience.
      $endgroup$
      – m_goldberg
      17 hours ago










    • $begingroup$
      @J.M. Thank you! So what is f[a_,b_][x_,y_], a function? Or a function of a function? I guess that I understand that now the head of the expression is f[a,b].
      $endgroup$
      – mjw
      17 hours ago
















    4












    $begingroup$

    As has been said in the comments to your question, because all plotting functions are based on strictly numerical calculations, you must give definite values to all six parameters. If you are in the position where you have no good idea how the function behaves as the parameters vary, you can explore the situation with Manipulate. Here is an example.



    f[α_, β_, γ_, δ_, p_, q_][x_, y_] := (x y)^(p - 1)/(α + β x + γ y + δ x y)^(p + q)

    With[{ϵ = .0001},
    Manipulate[
    ContourPlot[f[α, β, γ, δ, p, q][x, y], {x, 0, 2}, {y, 0, 2}],
    {α, ϵ, 1, Appearance -> "Labeled"},
    {β, ϵ, 1, Appearance -> "Labeled"},
    {γ, ϵ, 1, Appearance -> "Labeled"},
    {δ, ϵ, 1, Appearance -> "Labeled"},
    {p, 1, 4, 1, Appearance -> "Labeled"},
    {q, 1, 4, 1, Appearance -> "Labeled"}]]


    demo



    Note: I have no clue about what comprise good ranges for either the parameters or the variables. I made some simple assumptions about them. You should revise these assumptions to suit your needs.






    share|improve this answer











    $endgroup$













    • $begingroup$
      It looks like you separated out the "constants" and the "variables" in your function definition. Is there any significance to that other than convenience of notation? Where is this documented (just did a quick search for defining functions and did not see it)? Thanks!
      $endgroup$
      – mjw
      17 hours ago










    • $begingroup$
      @mjw, this tutorial might be of interest. It is not necessary to separate parameters and variables in this way, but it is definitely convenient.
      $endgroup$
      – J. M. is computer-less
      17 hours ago










    • $begingroup$
      @mjw. It is documented as J.M. points out. A higher level reference which a list of links about topics concerning functions is this one, which included the link given by J.M.
      $endgroup$
      – m_goldberg
      17 hours ago












    • $begingroup$
      @mjw. I use this style more for reasons of clarity than convenience.
      $endgroup$
      – m_goldberg
      17 hours ago










    • $begingroup$
      @J.M. Thank you! So what is f[a_,b_][x_,y_], a function? Or a function of a function? I guess that I understand that now the head of the expression is f[a,b].
      $endgroup$
      – mjw
      17 hours ago














    4












    4








    4





    $begingroup$

    As has been said in the comments to your question, because all plotting functions are based on strictly numerical calculations, you must give definite values to all six parameters. If you are in the position where you have no good idea how the function behaves as the parameters vary, you can explore the situation with Manipulate. Here is an example.



    f[α_, β_, γ_, δ_, p_, q_][x_, y_] := (x y)^(p - 1)/(α + β x + γ y + δ x y)^(p + q)

    With[{ϵ = .0001},
    Manipulate[
    ContourPlot[f[α, β, γ, δ, p, q][x, y], {x, 0, 2}, {y, 0, 2}],
    {α, ϵ, 1, Appearance -> "Labeled"},
    {β, ϵ, 1, Appearance -> "Labeled"},
    {γ, ϵ, 1, Appearance -> "Labeled"},
    {δ, ϵ, 1, Appearance -> "Labeled"},
    {p, 1, 4, 1, Appearance -> "Labeled"},
    {q, 1, 4, 1, Appearance -> "Labeled"}]]


    demo



    Note: I have no clue about what comprise good ranges for either the parameters or the variables. I made some simple assumptions about them. You should revise these assumptions to suit your needs.






    share|improve this answer











    $endgroup$



    As has been said in the comments to your question, because all plotting functions are based on strictly numerical calculations, you must give definite values to all six parameters. If you are in the position where you have no good idea how the function behaves as the parameters vary, you can explore the situation with Manipulate. Here is an example.



    f[α_, β_, γ_, δ_, p_, q_][x_, y_] := (x y)^(p - 1)/(α + β x + γ y + δ x y)^(p + q)

    With[{ϵ = .0001},
    Manipulate[
    ContourPlot[f[α, β, γ, δ, p, q][x, y], {x, 0, 2}, {y, 0, 2}],
    {α, ϵ, 1, Appearance -> "Labeled"},
    {β, ϵ, 1, Appearance -> "Labeled"},
    {γ, ϵ, 1, Appearance -> "Labeled"},
    {δ, ϵ, 1, Appearance -> "Labeled"},
    {p, 1, 4, 1, Appearance -> "Labeled"},
    {q, 1, 4, 1, Appearance -> "Labeled"}]]


    demo



    Note: I have no clue about what comprise good ranges for either the parameters or the variables. I made some simple assumptions about them. You should revise these assumptions to suit your needs.







    share|improve this answer














    share|improve this answer



    share|improve this answer








    edited 17 hours ago

























    answered 18 hours ago









    m_goldbergm_goldberg

    87.2k872197




    87.2k872197












    • $begingroup$
      It looks like you separated out the "constants" and the "variables" in your function definition. Is there any significance to that other than convenience of notation? Where is this documented (just did a quick search for defining functions and did not see it)? Thanks!
      $endgroup$
      – mjw
      17 hours ago










    • $begingroup$
      @mjw, this tutorial might be of interest. It is not necessary to separate parameters and variables in this way, but it is definitely convenient.
      $endgroup$
      – J. M. is computer-less
      17 hours ago










    • $begingroup$
      @mjw. It is documented as J.M. points out. A higher level reference which a list of links about topics concerning functions is this one, which included the link given by J.M.
      $endgroup$
      – m_goldberg
      17 hours ago












    • $begingroup$
      @mjw. I use this style more for reasons of clarity than convenience.
      $endgroup$
      – m_goldberg
      17 hours ago










    • $begingroup$
      @J.M. Thank you! So what is f[a_,b_][x_,y_], a function? Or a function of a function? I guess that I understand that now the head of the expression is f[a,b].
      $endgroup$
      – mjw
      17 hours ago


















    • $begingroup$
      It looks like you separated out the "constants" and the "variables" in your function definition. Is there any significance to that other than convenience of notation? Where is this documented (just did a quick search for defining functions and did not see it)? Thanks!
      $endgroup$
      – mjw
      17 hours ago










    • $begingroup$
      @mjw, this tutorial might be of interest. It is not necessary to separate parameters and variables in this way, but it is definitely convenient.
      $endgroup$
      – J. M. is computer-less
      17 hours ago










    • $begingroup$
      @mjw. It is documented as J.M. points out. A higher level reference which a list of links about topics concerning functions is this one, which included the link given by J.M.
      $endgroup$
      – m_goldberg
      17 hours ago












    • $begingroup$
      @mjw. I use this style more for reasons of clarity than convenience.
      $endgroup$
      – m_goldberg
      17 hours ago










    • $begingroup$
      @J.M. Thank you! So what is f[a_,b_][x_,y_], a function? Or a function of a function? I guess that I understand that now the head of the expression is f[a,b].
      $endgroup$
      – mjw
      17 hours ago
















    $begingroup$
    It looks like you separated out the "constants" and the "variables" in your function definition. Is there any significance to that other than convenience of notation? Where is this documented (just did a quick search for defining functions and did not see it)? Thanks!
    $endgroup$
    – mjw
    17 hours ago




    $begingroup$
    It looks like you separated out the "constants" and the "variables" in your function definition. Is there any significance to that other than convenience of notation? Where is this documented (just did a quick search for defining functions and did not see it)? Thanks!
    $endgroup$
    – mjw
    17 hours ago












    $begingroup$
    @mjw, this tutorial might be of interest. It is not necessary to separate parameters and variables in this way, but it is definitely convenient.
    $endgroup$
    – J. M. is computer-less
    17 hours ago




    $begingroup$
    @mjw, this tutorial might be of interest. It is not necessary to separate parameters and variables in this way, but it is definitely convenient.
    $endgroup$
    – J. M. is computer-less
    17 hours ago












    $begingroup$
    @mjw. It is documented as J.M. points out. A higher level reference which a list of links about topics concerning functions is this one, which included the link given by J.M.
    $endgroup$
    – m_goldberg
    17 hours ago






    $begingroup$
    @mjw. It is documented as J.M. points out. A higher level reference which a list of links about topics concerning functions is this one, which included the link given by J.M.
    $endgroup$
    – m_goldberg
    17 hours ago














    $begingroup$
    @mjw. I use this style more for reasons of clarity than convenience.
    $endgroup$
    – m_goldberg
    17 hours ago




    $begingroup$
    @mjw. I use this style more for reasons of clarity than convenience.
    $endgroup$
    – m_goldberg
    17 hours ago












    $begingroup$
    @J.M. Thank you! So what is f[a_,b_][x_,y_], a function? Or a function of a function? I guess that I understand that now the head of the expression is f[a,b].
    $endgroup$
    – mjw
    17 hours ago




    $begingroup$
    @J.M. Thank you! So what is f[a_,b_][x_,y_], a function? Or a function of a function? I guess that I understand that now the head of the expression is f[a,b].
    $endgroup$
    – mjw
    17 hours ago











    0












    $begingroup$

    One way is to simply set the constants as variables in your function definition, and then set them to the values you want when you call the function:



    f[x_, y_, α_, β_, γ_, δ_, p_, q_] := (x y)^(p -1)/(α + β x + γ y + δ x y)^(p + q);

    ContourPlot[f[x, y, 2, 3, 4, 5, .5, .5], {x, 0, 200}, {y, 0, 200}]


    enter image description here






    share|improve this answer











    $endgroup$


















      0












      $begingroup$

      One way is to simply set the constants as variables in your function definition, and then set them to the values you want when you call the function:



      f[x_, y_, α_, β_, γ_, δ_, p_, q_] := (x y)^(p -1)/(α + β x + γ y + δ x y)^(p + q);

      ContourPlot[f[x, y, 2, 3, 4, 5, .5, .5], {x, 0, 200}, {y, 0, 200}]


      enter image description here






      share|improve this answer











      $endgroup$
















        0












        0








        0





        $begingroup$

        One way is to simply set the constants as variables in your function definition, and then set them to the values you want when you call the function:



        f[x_, y_, α_, β_, γ_, δ_, p_, q_] := (x y)^(p -1)/(α + β x + γ y + δ x y)^(p + q);

        ContourPlot[f[x, y, 2, 3, 4, 5, .5, .5], {x, 0, 200}, {y, 0, 200}]


        enter image description here






        share|improve this answer











        $endgroup$



        One way is to simply set the constants as variables in your function definition, and then set them to the values you want when you call the function:



        f[x_, y_, α_, β_, γ_, δ_, p_, q_] := (x y)^(p -1)/(α + β x + γ y + δ x y)^(p + q);

        ContourPlot[f[x, y, 2, 3, 4, 5, .5, .5], {x, 0, 200}, {y, 0, 200}]


        enter image description here







        share|improve this answer














        share|improve this answer



        share|improve this answer








        edited 16 hours ago









        m_goldberg

        87.2k872197




        87.2k872197










        answered 18 hours ago









        mjwmjw

        3868




        3868






















            Banks Osborne is a new contributor. Be nice, and check out our Code of Conduct.










            draft saved

            draft discarded


















            Banks Osborne is a new contributor. Be nice, and check out our Code of Conduct.













            Banks Osborne is a new contributor. Be nice, and check out our Code of Conduct.












            Banks Osborne is a new contributor. Be nice, and check out our Code of Conduct.
















            Thanks for contributing an answer to Mathematica Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f192559%2fcan-the-assuming-function-be-used-with-contourplot-or-densityplot%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            El tren de la libertad Índice Antecedentes "Porque yo decido" Desarrollo de la...

            Castillo d'Acher Características Menú de navegación

            miktex-makemf did not succeed for the following reasonHow to fix the “Sorry, but C:…miktex-pdftex.exe did...