What is special about square numbers here? The 2019 Stack Overflow Developer Survey Results...

How are presidential pardons supposed to be used?

Can the DM override racial traits?

Didn't get enough time to take a Coding Test - what to do now?

How do you keep chess fun when your opponent constantly beats you?

How does this infinite series simplify to an integral?

Take groceries in checked luggage

Did the new image of black hole confirm the general theory of relativity?

Why did all the guest students take carriages to the Yule Ball?

Why can't devices on different VLANs, but on the same subnet, communicate?

How should I replace vector<uint8_t>::const_iterator in an API?

Empty set is subset of every set? If yes, why that...

Problems with Ubuntu mount /tmp

How did passengers keep warm on sail ships?

How many people can fit inside Mordenkainen's Magnificent Mansion?

Single author papers against my advisor's will?

When did F become S in typeography, and why?

ipsec, esp: Which key is used to generate the HMAC

Would it be possible to rearrange a dragon's flight muscle to somewhat circumvent the square-cube law?

Semisimplicity of the category of coherent sheaves?

What was the last x86 CPU that did not have the x87 floating-point unit built in?

Working through the single responsibility principle (SRP) in Python when calls are expensive

Why can't wing-mounted spoilers be used to steepen approaches?

What information about me do stores get via my credit card?

First use of “packing” as in carrying a gun



What is special about square numbers here?



The 2019 Stack Overflow Developer Survey Results Are In
Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)The final state of 1000 light bulbs switched on/off by 1000 people passing byWord Problem Proof? (just for fun, help)Enigma : of Wizards, Dwarves and HatsCoin Arrangement Puzzlecreating a more complex sudoku (69x6)Determining the favored penny on a chessboardHow many different ways can I add three numbers to get a certain sum?Board game - winning strategyDifference PuzzlesCould someone come up with a formula explaining the following?How many ways to place three distinguishable tokens on the white spaces of a $4$-by-$4$ chess board?












2












$begingroup$


I'm not not schooled in math. I'm 50 years old and I only have about a grade 8 level. But I do enjoy math and heard a question in the show "Growing Pains of a Teenage Genius" that interested me. So please forgive me. I do not speak "math."



The question has been posted here already, but I don't think the correct answer was given, and since I'm new, I haven't earned the points to be able to comment on that post. So I've started my own post.



The question is, if you have 1000 pennies lined up in a row, all heads up, and you turn over every second penny, then every third penny, then every fourth penny, etc. all the way until you turn over the thousandth and last penny, which ones will be heads up?



I've figured out that the answer is that the square numbers will be heads up. It is only the square numbers that will be flipped an even number of times to land them in the position they started out in. But I don't know why that is.



What is it about square numbers that they are the only ones that get flipped an even number of times through the process of flipping every 2nd, 3rd, 4th,...etc, penny?



I thought it must have something to do with factoring since the primes will only get flipped once, but the widening gap between each succession of flips is a bit complicated to visualize, and I don't know how to work that with factoring square numbers.



Is there something special about factoring square numbers that's applicable here?



How do you visualize this problem mathematically?










share|cite|improve this question







New contributor




DeeH is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$








  • 1




    $begingroup$
    You may find this of interest: math.stackexchange.com/questions/11223/…
    $endgroup$
    – Minus One-Twelfth
    1 hour ago


















2












$begingroup$


I'm not not schooled in math. I'm 50 years old and I only have about a grade 8 level. But I do enjoy math and heard a question in the show "Growing Pains of a Teenage Genius" that interested me. So please forgive me. I do not speak "math."



The question has been posted here already, but I don't think the correct answer was given, and since I'm new, I haven't earned the points to be able to comment on that post. So I've started my own post.



The question is, if you have 1000 pennies lined up in a row, all heads up, and you turn over every second penny, then every third penny, then every fourth penny, etc. all the way until you turn over the thousandth and last penny, which ones will be heads up?



I've figured out that the answer is that the square numbers will be heads up. It is only the square numbers that will be flipped an even number of times to land them in the position they started out in. But I don't know why that is.



What is it about square numbers that they are the only ones that get flipped an even number of times through the process of flipping every 2nd, 3rd, 4th,...etc, penny?



I thought it must have something to do with factoring since the primes will only get flipped once, but the widening gap between each succession of flips is a bit complicated to visualize, and I don't know how to work that with factoring square numbers.



Is there something special about factoring square numbers that's applicable here?



How do you visualize this problem mathematically?










share|cite|improve this question







New contributor




DeeH is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$








  • 1




    $begingroup$
    You may find this of interest: math.stackexchange.com/questions/11223/…
    $endgroup$
    – Minus One-Twelfth
    1 hour ago
















2












2








2





$begingroup$


I'm not not schooled in math. I'm 50 years old and I only have about a grade 8 level. But I do enjoy math and heard a question in the show "Growing Pains of a Teenage Genius" that interested me. So please forgive me. I do not speak "math."



The question has been posted here already, but I don't think the correct answer was given, and since I'm new, I haven't earned the points to be able to comment on that post. So I've started my own post.



The question is, if you have 1000 pennies lined up in a row, all heads up, and you turn over every second penny, then every third penny, then every fourth penny, etc. all the way until you turn over the thousandth and last penny, which ones will be heads up?



I've figured out that the answer is that the square numbers will be heads up. It is only the square numbers that will be flipped an even number of times to land them in the position they started out in. But I don't know why that is.



What is it about square numbers that they are the only ones that get flipped an even number of times through the process of flipping every 2nd, 3rd, 4th,...etc, penny?



I thought it must have something to do with factoring since the primes will only get flipped once, but the widening gap between each succession of flips is a bit complicated to visualize, and I don't know how to work that with factoring square numbers.



Is there something special about factoring square numbers that's applicable here?



How do you visualize this problem mathematically?










share|cite|improve this question







New contributor




DeeH is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$




I'm not not schooled in math. I'm 50 years old and I only have about a grade 8 level. But I do enjoy math and heard a question in the show "Growing Pains of a Teenage Genius" that interested me. So please forgive me. I do not speak "math."



The question has been posted here already, but I don't think the correct answer was given, and since I'm new, I haven't earned the points to be able to comment on that post. So I've started my own post.



The question is, if you have 1000 pennies lined up in a row, all heads up, and you turn over every second penny, then every third penny, then every fourth penny, etc. all the way until you turn over the thousandth and last penny, which ones will be heads up?



I've figured out that the answer is that the square numbers will be heads up. It is only the square numbers that will be flipped an even number of times to land them in the position they started out in. But I don't know why that is.



What is it about square numbers that they are the only ones that get flipped an even number of times through the process of flipping every 2nd, 3rd, 4th,...etc, penny?



I thought it must have something to do with factoring since the primes will only get flipped once, but the widening gap between each succession of flips is a bit complicated to visualize, and I don't know how to work that with factoring square numbers.



Is there something special about factoring square numbers that's applicable here?



How do you visualize this problem mathematically?







puzzle






share|cite|improve this question







New contributor




DeeH is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|cite|improve this question







New contributor




DeeH is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|cite|improve this question




share|cite|improve this question






New contributor




DeeH is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked 1 hour ago









DeeHDeeH

112




112




New contributor




DeeH is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





DeeH is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






DeeH is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.








  • 1




    $begingroup$
    You may find this of interest: math.stackexchange.com/questions/11223/…
    $endgroup$
    – Minus One-Twelfth
    1 hour ago
















  • 1




    $begingroup$
    You may find this of interest: math.stackexchange.com/questions/11223/…
    $endgroup$
    – Minus One-Twelfth
    1 hour ago










1




1




$begingroup$
You may find this of interest: math.stackexchange.com/questions/11223/…
$endgroup$
– Minus One-Twelfth
1 hour ago






$begingroup$
You may find this of interest: math.stackexchange.com/questions/11223/…
$endgroup$
– Minus One-Twelfth
1 hour ago












1 Answer
1






active

oldest

votes


















4












$begingroup$

Each penny will be flipped a number of times equal to the number of divisors it has (including or not including $1$ based on the specific wording of the problem).



Supposing that $d$ is a divisor of $n$, i.e. that there is some $k$ such that $n = dtimes k$, then $k$ is also a divisor. In the event that $k$ is different than $d$ then it will be counted separately than $d$ when counting the total number of divisors. In this way, every single divisor $d$ of $n$ that we wish to count will have a corresponding different divisor $k=frac{n}{d}$.



All except the circumstance where $n$ happens to be a square number $n=r^2$ in which case you have $r$ is a divisor and the corresponding paired divisor $frac{n}{r}$ is again equal to $r$ and so is not distinct and need not be counted a second time.



Let's look at $12$ for an example.



$12$ has the divisors $color{red}{1},color{blue}{2},color{purple}{3},color{purple}{4},color{blue}{6},color{red}{12}$. Note how the numbers with matching colors are paired together and multiply together to give $12$.



Now, let's look at a square number as an example like $16$.



$16$ has the divisors $color{red}{1},color{blue}{2},color{purple}{4},color{blue}{8},color{red}{16}$. Notice here again we have the numbers with matching color multiply together to get $16$. However, in the center since $16$ is square you only have one number of that color, not two, again because the corresponding divisor associated with it happens to be the same number. This pattern continues for all numbers. Every square number has an odd number of divisors and every non-square number has an even number of divisors and it is for this reason that the only pennies left turned heads up will be the ones at the square number positions.






share|cite|improve this answer









$endgroup$














    Your Answer








    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });






    DeeH is a new contributor. Be nice, and check out our Code of Conduct.










    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3186800%2fwhat-is-special-about-square-numbers-here%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    4












    $begingroup$

    Each penny will be flipped a number of times equal to the number of divisors it has (including or not including $1$ based on the specific wording of the problem).



    Supposing that $d$ is a divisor of $n$, i.e. that there is some $k$ such that $n = dtimes k$, then $k$ is also a divisor. In the event that $k$ is different than $d$ then it will be counted separately than $d$ when counting the total number of divisors. In this way, every single divisor $d$ of $n$ that we wish to count will have a corresponding different divisor $k=frac{n}{d}$.



    All except the circumstance where $n$ happens to be a square number $n=r^2$ in which case you have $r$ is a divisor and the corresponding paired divisor $frac{n}{r}$ is again equal to $r$ and so is not distinct and need not be counted a second time.



    Let's look at $12$ for an example.



    $12$ has the divisors $color{red}{1},color{blue}{2},color{purple}{3},color{purple}{4},color{blue}{6},color{red}{12}$. Note how the numbers with matching colors are paired together and multiply together to give $12$.



    Now, let's look at a square number as an example like $16$.



    $16$ has the divisors $color{red}{1},color{blue}{2},color{purple}{4},color{blue}{8},color{red}{16}$. Notice here again we have the numbers with matching color multiply together to get $16$. However, in the center since $16$ is square you only have one number of that color, not two, again because the corresponding divisor associated with it happens to be the same number. This pattern continues for all numbers. Every square number has an odd number of divisors and every non-square number has an even number of divisors and it is for this reason that the only pennies left turned heads up will be the ones at the square number positions.






    share|cite|improve this answer









    $endgroup$


















      4












      $begingroup$

      Each penny will be flipped a number of times equal to the number of divisors it has (including or not including $1$ based on the specific wording of the problem).



      Supposing that $d$ is a divisor of $n$, i.e. that there is some $k$ such that $n = dtimes k$, then $k$ is also a divisor. In the event that $k$ is different than $d$ then it will be counted separately than $d$ when counting the total number of divisors. In this way, every single divisor $d$ of $n$ that we wish to count will have a corresponding different divisor $k=frac{n}{d}$.



      All except the circumstance where $n$ happens to be a square number $n=r^2$ in which case you have $r$ is a divisor and the corresponding paired divisor $frac{n}{r}$ is again equal to $r$ and so is not distinct and need not be counted a second time.



      Let's look at $12$ for an example.



      $12$ has the divisors $color{red}{1},color{blue}{2},color{purple}{3},color{purple}{4},color{blue}{6},color{red}{12}$. Note how the numbers with matching colors are paired together and multiply together to give $12$.



      Now, let's look at a square number as an example like $16$.



      $16$ has the divisors $color{red}{1},color{blue}{2},color{purple}{4},color{blue}{8},color{red}{16}$. Notice here again we have the numbers with matching color multiply together to get $16$. However, in the center since $16$ is square you only have one number of that color, not two, again because the corresponding divisor associated with it happens to be the same number. This pattern continues for all numbers. Every square number has an odd number of divisors and every non-square number has an even number of divisors and it is for this reason that the only pennies left turned heads up will be the ones at the square number positions.






      share|cite|improve this answer









      $endgroup$
















        4












        4








        4





        $begingroup$

        Each penny will be flipped a number of times equal to the number of divisors it has (including or not including $1$ based on the specific wording of the problem).



        Supposing that $d$ is a divisor of $n$, i.e. that there is some $k$ such that $n = dtimes k$, then $k$ is also a divisor. In the event that $k$ is different than $d$ then it will be counted separately than $d$ when counting the total number of divisors. In this way, every single divisor $d$ of $n$ that we wish to count will have a corresponding different divisor $k=frac{n}{d}$.



        All except the circumstance where $n$ happens to be a square number $n=r^2$ in which case you have $r$ is a divisor and the corresponding paired divisor $frac{n}{r}$ is again equal to $r$ and so is not distinct and need not be counted a second time.



        Let's look at $12$ for an example.



        $12$ has the divisors $color{red}{1},color{blue}{2},color{purple}{3},color{purple}{4},color{blue}{6},color{red}{12}$. Note how the numbers with matching colors are paired together and multiply together to give $12$.



        Now, let's look at a square number as an example like $16$.



        $16$ has the divisors $color{red}{1},color{blue}{2},color{purple}{4},color{blue}{8},color{red}{16}$. Notice here again we have the numbers with matching color multiply together to get $16$. However, in the center since $16$ is square you only have one number of that color, not two, again because the corresponding divisor associated with it happens to be the same number. This pattern continues for all numbers. Every square number has an odd number of divisors and every non-square number has an even number of divisors and it is for this reason that the only pennies left turned heads up will be the ones at the square number positions.






        share|cite|improve this answer









        $endgroup$



        Each penny will be flipped a number of times equal to the number of divisors it has (including or not including $1$ based on the specific wording of the problem).



        Supposing that $d$ is a divisor of $n$, i.e. that there is some $k$ such that $n = dtimes k$, then $k$ is also a divisor. In the event that $k$ is different than $d$ then it will be counted separately than $d$ when counting the total number of divisors. In this way, every single divisor $d$ of $n$ that we wish to count will have a corresponding different divisor $k=frac{n}{d}$.



        All except the circumstance where $n$ happens to be a square number $n=r^2$ in which case you have $r$ is a divisor and the corresponding paired divisor $frac{n}{r}$ is again equal to $r$ and so is not distinct and need not be counted a second time.



        Let's look at $12$ for an example.



        $12$ has the divisors $color{red}{1},color{blue}{2},color{purple}{3},color{purple}{4},color{blue}{6},color{red}{12}$. Note how the numbers with matching colors are paired together and multiply together to give $12$.



        Now, let's look at a square number as an example like $16$.



        $16$ has the divisors $color{red}{1},color{blue}{2},color{purple}{4},color{blue}{8},color{red}{16}$. Notice here again we have the numbers with matching color multiply together to get $16$. However, in the center since $16$ is square you only have one number of that color, not two, again because the corresponding divisor associated with it happens to be the same number. This pattern continues for all numbers. Every square number has an odd number of divisors and every non-square number has an even number of divisors and it is for this reason that the only pennies left turned heads up will be the ones at the square number positions.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered 59 mins ago









        JMoravitzJMoravitz

        49k43990




        49k43990






















            DeeH is a new contributor. Be nice, and check out our Code of Conduct.










            draft saved

            draft discarded


















            DeeH is a new contributor. Be nice, and check out our Code of Conduct.













            DeeH is a new contributor. Be nice, and check out our Code of Conduct.












            DeeH is a new contributor. Be nice, and check out our Code of Conduct.
















            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3186800%2fwhat-is-special-about-square-numbers-here%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            El tren de la libertad Índice Antecedentes "Porque yo decido" Desarrollo de la...

            Castillo d'Acher Características Menú de navegación

            miktex-makemf did not succeed for the following reasonHow to fix the “Sorry, but C:…miktex-pdftex.exe did...