Prove that BD bisects angle ABC Announcing the arrival of Valued Associate #679: Cesar...

The test team as an enemy of development? And how can this be avoided?

How did Fremen produce and carry enough thumpers to use Sandworms as de facto Ubers?

How can I set the aperture on my DSLR when it's attached to a telescope instead of a lens?

Sum letters are not two different

Is the IBM 5153 color display compatible with the Tandy 1000 16 color modes?

Misunderstanding of Sylow theory

What's the point of the test set?

Would it be easier to apply for a UK visa if there is a host family to sponsor for you in going there?

Should a wizard buy fine inks every time he want to copy spells into his spellbook?

Karn the great creator - 'card from outside the game' in sealed

One-one communication

Lagrange four-squares theorem --- deterministic complexity

An adverb for when you're not exaggerating

Project Euler #1 in C++

The Nth Gryphon Number

Why do early math courses focus on the cross sections of a cone and not on other 3D objects?

Is CEO the "profession" with the most psychopaths?

What makes a man succeed?

Do wooden building fires get hotter than 600°C?

How does Belgium enforce obligatory attendance in elections?

What is an "asse" in Elizabethan English?

How to compare two different files line by line in unix?

What does Turing mean by this statement?

Converted a Scalar function to a TVF function for parallel execution-Still running in Serial mode



Prove that BD bisects angle ABC



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)A geometry problem that involves congruence of triangles.Prove that: $S_{XYZ}geq frac{1}{4}S_{ABC}$Prove that angle ACB > angle ABD.Let $D, E, F$ be the feet of the altitudes from $A, B, C$ in $triangle ABC$. Prove that the perpendicular bisector of $EF$ also bisects $BC$.In the following figure, prove that $AC$ bisects $GH$.In triangle $ABC$ find angle $angle BAC$ given that…Show that the altitude bisects the corresponding angleAngle bisector contains the Nine Point CentreProve sum of angles in problem involving bisectors in a given triangleHow to solve for $angle BDC$ given the information of other angles in the picture












6












$begingroup$



Given that $triangle ABC$ is an isosceles right triangle with $AC=BC$ and angle $ACB=90°$. $D$ is a point on $AC$ and $E$ is on the extension of $BD$ such that $AE$ is perpendicular to $BE$. If $AE=frac{1}{2}BD$, prove that BD bisects angle $angle ABC$.




I have tried proving triangle $triangle AEB$ and triangle $triangle DCB$ similar but can't do so. After some angle chasing, I arrived at the result that somehow if I prove angle $angle CDB$ to be $67.5°$ then it could be proved. But I failed to do so.enter image description here










share|cite|improve this question









New contributor




Pushpa Kumari is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$












  • $begingroup$
    Start by drawing a diagram and showing all the given information.
    $endgroup$
    – 1123581321
    2 hours ago










  • $begingroup$
    @PushpaKumari just provide a link to your image, someone will be willing to edit it.
    $endgroup$
    – Quang Hoang
    1 hour ago










  • $begingroup$
    To prove that the two triangles are similar, show that they both have right angles (this is given) and use the fact that angles EDA and BDC are vertically opposite.
    $endgroup$
    – 1123581321
    1 hour ago
















6












$begingroup$



Given that $triangle ABC$ is an isosceles right triangle with $AC=BC$ and angle $ACB=90°$. $D$ is a point on $AC$ and $E$ is on the extension of $BD$ such that $AE$ is perpendicular to $BE$. If $AE=frac{1}{2}BD$, prove that BD bisects angle $angle ABC$.




I have tried proving triangle $triangle AEB$ and triangle $triangle DCB$ similar but can't do so. After some angle chasing, I arrived at the result that somehow if I prove angle $angle CDB$ to be $67.5°$ then it could be proved. But I failed to do so.enter image description here










share|cite|improve this question









New contributor




Pushpa Kumari is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$












  • $begingroup$
    Start by drawing a diagram and showing all the given information.
    $endgroup$
    – 1123581321
    2 hours ago










  • $begingroup$
    @PushpaKumari just provide a link to your image, someone will be willing to edit it.
    $endgroup$
    – Quang Hoang
    1 hour ago










  • $begingroup$
    To prove that the two triangles are similar, show that they both have right angles (this is given) and use the fact that angles EDA and BDC are vertically opposite.
    $endgroup$
    – 1123581321
    1 hour ago














6












6








6





$begingroup$



Given that $triangle ABC$ is an isosceles right triangle with $AC=BC$ and angle $ACB=90°$. $D$ is a point on $AC$ and $E$ is on the extension of $BD$ such that $AE$ is perpendicular to $BE$. If $AE=frac{1}{2}BD$, prove that BD bisects angle $angle ABC$.




I have tried proving triangle $triangle AEB$ and triangle $triangle DCB$ similar but can't do so. After some angle chasing, I arrived at the result that somehow if I prove angle $angle CDB$ to be $67.5°$ then it could be proved. But I failed to do so.enter image description here










share|cite|improve this question









New contributor




Pushpa Kumari is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$





Given that $triangle ABC$ is an isosceles right triangle with $AC=BC$ and angle $ACB=90°$. $D$ is a point on $AC$ and $E$ is on the extension of $BD$ such that $AE$ is perpendicular to $BE$. If $AE=frac{1}{2}BD$, prove that BD bisects angle $angle ABC$.




I have tried proving triangle $triangle AEB$ and triangle $triangle DCB$ similar but can't do so. After some angle chasing, I arrived at the result that somehow if I prove angle $angle CDB$ to be $67.5°$ then it could be proved. But I failed to do so.enter image description here







geometry triangles






share|cite|improve this question









New contributor




Pushpa Kumari is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|cite|improve this question









New contributor




Pushpa Kumari is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|cite|improve this question




share|cite|improve this question








edited 1 hour ago







Pushpa Kumari













New contributor




Pushpa Kumari is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked 2 hours ago









Pushpa KumariPushpa Kumari

334




334




New contributor




Pushpa Kumari is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





Pushpa Kumari is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






Pushpa Kumari is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.












  • $begingroup$
    Start by drawing a diagram and showing all the given information.
    $endgroup$
    – 1123581321
    2 hours ago










  • $begingroup$
    @PushpaKumari just provide a link to your image, someone will be willing to edit it.
    $endgroup$
    – Quang Hoang
    1 hour ago










  • $begingroup$
    To prove that the two triangles are similar, show that they both have right angles (this is given) and use the fact that angles EDA and BDC are vertically opposite.
    $endgroup$
    – 1123581321
    1 hour ago


















  • $begingroup$
    Start by drawing a diagram and showing all the given information.
    $endgroup$
    – 1123581321
    2 hours ago










  • $begingroup$
    @PushpaKumari just provide a link to your image, someone will be willing to edit it.
    $endgroup$
    – Quang Hoang
    1 hour ago










  • $begingroup$
    To prove that the two triangles are similar, show that they both have right angles (this is given) and use the fact that angles EDA and BDC are vertically opposite.
    $endgroup$
    – 1123581321
    1 hour ago
















$begingroup$
Start by drawing a diagram and showing all the given information.
$endgroup$
– 1123581321
2 hours ago




$begingroup$
Start by drawing a diagram and showing all the given information.
$endgroup$
– 1123581321
2 hours ago












$begingroup$
@PushpaKumari just provide a link to your image, someone will be willing to edit it.
$endgroup$
– Quang Hoang
1 hour ago




$begingroup$
@PushpaKumari just provide a link to your image, someone will be willing to edit it.
$endgroup$
– Quang Hoang
1 hour ago












$begingroup$
To prove that the two triangles are similar, show that they both have right angles (this is given) and use the fact that angles EDA and BDC are vertically opposite.
$endgroup$
– 1123581321
1 hour ago




$begingroup$
To prove that the two triangles are similar, show that they both have right angles (this is given) and use the fact that angles EDA and BDC are vertically opposite.
$endgroup$
– 1123581321
1 hour ago










3 Answers
3






active

oldest

votes


















1












$begingroup$

Refer to the figure:



$hspace{2cm}$enter image description here



From similarity of triangles $Delta ADE$ and $Delta BCD$ (corresponding angles are equal):
$$frac{x}{y}=frac{y-z}{2x} Rightarrow 2x^2=y^2-zy (1)$$
From the right $Delta BCD$:
$$z^2+y^2=(2x)^2 (2)$$
Now substitute $(1)$ to $(2)$:
$$z^2+y^2=2(y^2-zy) Rightarrow \
(y-z)^2=2z^2 Rightarrow \
y-z=zsqrt{2} Rightarrow \
frac{y-z}{z}=frac{ysqrt{2}}{y},$$

which is consistent with the angle bisector theorem.






share|cite|improve this answer









$endgroup$





















    1












    $begingroup$

    enter image description here



    Let $M$ be the midpoint of $BD$ and $G$, $F$ be projections of $M$, $E$ onto $AC$ respectively.



    First notice that $angle GMD = angle DAE = 90^circ -angle ADE$.



    Now $triangle MGD$ and $triangle AFE$ are congruent as they are right triangle having equal hypothenuse ($MD=AE$) and a pair of equal angles. So $$FA = MG = BC/2 = AC/2.$$
    Thus $F$ is the midpoint of $AC$ and $AE = EC$. Since $E$ lies on the circumcircle of $triangle ABC$, it follows that $E$ is the midpoint of arc $AC$. Hence, $BE$ is the angle bisector of $angle ABC$.






    share|cite|improve this answer









    $endgroup$





















      0












      $begingroup$

      A simple geometric solution:



      Extend BC and AE to intersect at F. Triangles AFC and BDC are similar. The side CB of triangle BDC is equal to side AC of triangle AFC, this results in that other sides of AFC and BDC are equal including AF and BD and we have $AE=frac {1}{2}DB=frac {1}{2}AF$. But AE is also perpendicular to BE, that means BE is the height of ABE and triangle ABF is isosceles and its height BE bisects the angle$ <ABC$.






      share|cite









      $endgroup$














        Your Answer








        StackExchange.ready(function() {
        var channelOptions = {
        tags: "".split(" "),
        id: "69"
        };
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function() {
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled) {
        StackExchange.using("snippets", function() {
        createEditor();
        });
        }
        else {
        createEditor();
        }
        });

        function createEditor() {
        StackExchange.prepareEditor({
        heartbeatType: 'answer',
        autoActivateHeartbeat: false,
        convertImagesToLinks: true,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: 10,
        bindNavPrevention: true,
        postfix: "",
        imageUploader: {
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        },
        noCode: true, onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        });


        }
        });






        Pushpa Kumari is a new contributor. Be nice, and check out our Code of Conduct.










        draft saved

        draft discarded


















        StackExchange.ready(
        function () {
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3194309%2fprove-that-bd-bisects-angle-abc%23new-answer', 'question_page');
        }
        );

        Post as a guest















        Required, but never shown

























        3 Answers
        3






        active

        oldest

        votes








        3 Answers
        3






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes









        1












        $begingroup$

        Refer to the figure:



        $hspace{2cm}$enter image description here



        From similarity of triangles $Delta ADE$ and $Delta BCD$ (corresponding angles are equal):
        $$frac{x}{y}=frac{y-z}{2x} Rightarrow 2x^2=y^2-zy (1)$$
        From the right $Delta BCD$:
        $$z^2+y^2=(2x)^2 (2)$$
        Now substitute $(1)$ to $(2)$:
        $$z^2+y^2=2(y^2-zy) Rightarrow \
        (y-z)^2=2z^2 Rightarrow \
        y-z=zsqrt{2} Rightarrow \
        frac{y-z}{z}=frac{ysqrt{2}}{y},$$

        which is consistent with the angle bisector theorem.






        share|cite|improve this answer









        $endgroup$


















          1












          $begingroup$

          Refer to the figure:



          $hspace{2cm}$enter image description here



          From similarity of triangles $Delta ADE$ and $Delta BCD$ (corresponding angles are equal):
          $$frac{x}{y}=frac{y-z}{2x} Rightarrow 2x^2=y^2-zy (1)$$
          From the right $Delta BCD$:
          $$z^2+y^2=(2x)^2 (2)$$
          Now substitute $(1)$ to $(2)$:
          $$z^2+y^2=2(y^2-zy) Rightarrow \
          (y-z)^2=2z^2 Rightarrow \
          y-z=zsqrt{2} Rightarrow \
          frac{y-z}{z}=frac{ysqrt{2}}{y},$$

          which is consistent with the angle bisector theorem.






          share|cite|improve this answer









          $endgroup$
















            1












            1








            1





            $begingroup$

            Refer to the figure:



            $hspace{2cm}$enter image description here



            From similarity of triangles $Delta ADE$ and $Delta BCD$ (corresponding angles are equal):
            $$frac{x}{y}=frac{y-z}{2x} Rightarrow 2x^2=y^2-zy (1)$$
            From the right $Delta BCD$:
            $$z^2+y^2=(2x)^2 (2)$$
            Now substitute $(1)$ to $(2)$:
            $$z^2+y^2=2(y^2-zy) Rightarrow \
            (y-z)^2=2z^2 Rightarrow \
            y-z=zsqrt{2} Rightarrow \
            frac{y-z}{z}=frac{ysqrt{2}}{y},$$

            which is consistent with the angle bisector theorem.






            share|cite|improve this answer









            $endgroup$



            Refer to the figure:



            $hspace{2cm}$enter image description here



            From similarity of triangles $Delta ADE$ and $Delta BCD$ (corresponding angles are equal):
            $$frac{x}{y}=frac{y-z}{2x} Rightarrow 2x^2=y^2-zy (1)$$
            From the right $Delta BCD$:
            $$z^2+y^2=(2x)^2 (2)$$
            Now substitute $(1)$ to $(2)$:
            $$z^2+y^2=2(y^2-zy) Rightarrow \
            (y-z)^2=2z^2 Rightarrow \
            y-z=zsqrt{2} Rightarrow \
            frac{y-z}{z}=frac{ysqrt{2}}{y},$$

            which is consistent with the angle bisector theorem.







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered 1 hour ago









            farruhotafarruhota

            22.3k2942




            22.3k2942























                1












                $begingroup$

                enter image description here



                Let $M$ be the midpoint of $BD$ and $G$, $F$ be projections of $M$, $E$ onto $AC$ respectively.



                First notice that $angle GMD = angle DAE = 90^circ -angle ADE$.



                Now $triangle MGD$ and $triangle AFE$ are congruent as they are right triangle having equal hypothenuse ($MD=AE$) and a pair of equal angles. So $$FA = MG = BC/2 = AC/2.$$
                Thus $F$ is the midpoint of $AC$ and $AE = EC$. Since $E$ lies on the circumcircle of $triangle ABC$, it follows that $E$ is the midpoint of arc $AC$. Hence, $BE$ is the angle bisector of $angle ABC$.






                share|cite|improve this answer









                $endgroup$


















                  1












                  $begingroup$

                  enter image description here



                  Let $M$ be the midpoint of $BD$ and $G$, $F$ be projections of $M$, $E$ onto $AC$ respectively.



                  First notice that $angle GMD = angle DAE = 90^circ -angle ADE$.



                  Now $triangle MGD$ and $triangle AFE$ are congruent as they are right triangle having equal hypothenuse ($MD=AE$) and a pair of equal angles. So $$FA = MG = BC/2 = AC/2.$$
                  Thus $F$ is the midpoint of $AC$ and $AE = EC$. Since $E$ lies on the circumcircle of $triangle ABC$, it follows that $E$ is the midpoint of arc $AC$. Hence, $BE$ is the angle bisector of $angle ABC$.






                  share|cite|improve this answer









                  $endgroup$
















                    1












                    1








                    1





                    $begingroup$

                    enter image description here



                    Let $M$ be the midpoint of $BD$ and $G$, $F$ be projections of $M$, $E$ onto $AC$ respectively.



                    First notice that $angle GMD = angle DAE = 90^circ -angle ADE$.



                    Now $triangle MGD$ and $triangle AFE$ are congruent as they are right triangle having equal hypothenuse ($MD=AE$) and a pair of equal angles. So $$FA = MG = BC/2 = AC/2.$$
                    Thus $F$ is the midpoint of $AC$ and $AE = EC$. Since $E$ lies on the circumcircle of $triangle ABC$, it follows that $E$ is the midpoint of arc $AC$. Hence, $BE$ is the angle bisector of $angle ABC$.






                    share|cite|improve this answer









                    $endgroup$



                    enter image description here



                    Let $M$ be the midpoint of $BD$ and $G$, $F$ be projections of $M$, $E$ onto $AC$ respectively.



                    First notice that $angle GMD = angle DAE = 90^circ -angle ADE$.



                    Now $triangle MGD$ and $triangle AFE$ are congruent as they are right triangle having equal hypothenuse ($MD=AE$) and a pair of equal angles. So $$FA = MG = BC/2 = AC/2.$$
                    Thus $F$ is the midpoint of $AC$ and $AE = EC$. Since $E$ lies on the circumcircle of $triangle ABC$, it follows that $E$ is the midpoint of arc $AC$. Hence, $BE$ is the angle bisector of $angle ABC$.







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered 1 hour ago









                    Quang HoangQuang Hoang

                    13.3k1233




                    13.3k1233























                        0












                        $begingroup$

                        A simple geometric solution:



                        Extend BC and AE to intersect at F. Triangles AFC and BDC are similar. The side CB of triangle BDC is equal to side AC of triangle AFC, this results in that other sides of AFC and BDC are equal including AF and BD and we have $AE=frac {1}{2}DB=frac {1}{2}AF$. But AE is also perpendicular to BE, that means BE is the height of ABE and triangle ABF is isosceles and its height BE bisects the angle$ <ABC$.






                        share|cite









                        $endgroup$


















                          0












                          $begingroup$

                          A simple geometric solution:



                          Extend BC and AE to intersect at F. Triangles AFC and BDC are similar. The side CB of triangle BDC is equal to side AC of triangle AFC, this results in that other sides of AFC and BDC are equal including AF and BD and we have $AE=frac {1}{2}DB=frac {1}{2}AF$. But AE is also perpendicular to BE, that means BE is the height of ABE and triangle ABF is isosceles and its height BE bisects the angle$ <ABC$.






                          share|cite









                          $endgroup$
















                            0












                            0








                            0





                            $begingroup$

                            A simple geometric solution:



                            Extend BC and AE to intersect at F. Triangles AFC and BDC are similar. The side CB of triangle BDC is equal to side AC of triangle AFC, this results in that other sides of AFC and BDC are equal including AF and BD and we have $AE=frac {1}{2}DB=frac {1}{2}AF$. But AE is also perpendicular to BE, that means BE is the height of ABE and triangle ABF is isosceles and its height BE bisects the angle$ <ABC$.






                            share|cite









                            $endgroup$



                            A simple geometric solution:



                            Extend BC and AE to intersect at F. Triangles AFC and BDC are similar. The side CB of triangle BDC is equal to side AC of triangle AFC, this results in that other sides of AFC and BDC are equal including AF and BD and we have $AE=frac {1}{2}DB=frac {1}{2}AF$. But AE is also perpendicular to BE, that means BE is the height of ABE and triangle ABF is isosceles and its height BE bisects the angle$ <ABC$.







                            share|cite












                            share|cite



                            share|cite










                            answered 2 mins ago









                            siroussirous

                            1,7481514




                            1,7481514






















                                Pushpa Kumari is a new contributor. Be nice, and check out our Code of Conduct.










                                draft saved

                                draft discarded


















                                Pushpa Kumari is a new contributor. Be nice, and check out our Code of Conduct.













                                Pushpa Kumari is a new contributor. Be nice, and check out our Code of Conduct.












                                Pushpa Kumari is a new contributor. Be nice, and check out our Code of Conduct.
















                                Thanks for contributing an answer to Mathematics Stack Exchange!


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid



                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.


                                Use MathJax to format equations. MathJax reference.


                                To learn more, see our tips on writing great answers.




                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function () {
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3194309%2fprove-that-bd-bisects-angle-abc%23new-answer', 'question_page');
                                }
                                );

                                Post as a guest















                                Required, but never shown





















































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown

































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown







                                Popular posts from this blog

                                El tren de la libertad Índice Antecedentes "Porque yo decido" Desarrollo de la...

                                Puerta de Hutt Referencias Enlaces externos Menú de navegación15°58′00″S 5°42′00″O /...

                                Castillo d'Acher Características Menú de navegación