using NDEigensystem to solve the Mathieu equation Announcing the arrival of Valued Associate...
Does a Draconic Bloodline sorcerer's doubled proficiency bonus for Charisma checks against dragons apply to all dragon types or only the chosen one?
Married in secret, can marital status in passport be changed at a later date?
TV series episode where humans nuke aliens before decrypting their message that states they come in peace
Why isn't everyone flabbergasted about Bran's "gift"?
Are these square matrices always diagonalisable?
Could a cockatrice have parasitic embryos?
Marquee sign letters
How would you suggest I follow up with coworkers about our deadline that's today?
What's the difference between using dependency injection with a container and using a service locator?
Is a self contained air-bullet cartridge feasible?
Why doesn't the university give past final exams' answers?
/bin/ls sorts differently than just ls
Was Objective-C really a hindrance to Apple software development?
Why do people think Winterfell crypts is the safest place for women, children and old people?
What is a 'Key' in computer science?
My admission is revoked after accepting the admission offer
What's called a person who works as someone who puts products on shelves in stores?
Philosophers who were composers?
What's parked in Mil Moscow helicopter plant?
Did war bonds have better investment alternatives during WWII?
using NDEigensystem to solve the Mathieu equation
What to do with someone that cheated their way though university and a PhD program?
Processing ADC conversion result: DMA vs Processor Registers
Simulate round-robin tournament draw
using NDEigensystem to solve the Mathieu equation
Announcing the arrival of Valued Associate #679: Cesar Manara
Unicorn Meta Zoo #1: Why another podcast?How to correctly use DSolve when the force is an impulse (dirac delta) and initial conditions are not zeroIndexing of Large Autonomous System of Equations for Use in NDSolveFEM Solution desired for “Plate with orifice” deflection: Application of Boundary Conditions and use of RegionsSolving an ODE using shooting methodHow to rescale the independent variable?Trouble with shooting method for a 4th-order stiff ODEFinding eigenvalues for Laplacian operator for 3D shape with Neumann boundary conditionsHow do you find the eigenvalues of a PDE (Dynamic Euler-Bernoulli beam)?How to evaluate the PDE solution dependent on the `RegionMarkers"?Using NDEigensystem to solve coupled eigenvalue problem
$begingroup$
To be able to apply the differentialequation capabilities of Mathematica to my graduate thesis, I am trying to apply NDEigensystem to an eigenproblem whose solution I know, but I am having some trouble doing so.
As a test problem, I am using an algebraic version of the Mathieu equation,
$$(1-zeta^{2})w^{primeprime}-zeta w^{prime}+left(a+2q-4qzeta^{2}right)w=0$$
For this example I set $q=4/3$ and take only the first three eigenpairs:
m = 3; q = 4/3;
op = -(1 - ζ^2) u''[ζ] + ζ u'[ζ] + 2 q (2 ζ^2 - 1) u[ζ];
bc = DirichletCondition[u[ζ] == 0, True];
{λ, fl} = NDEigensystem[{op, bc}, u, {ζ, 0, 1}, m];
I chose the Mathieu equation as a nontrivial example as Mathematica already has a function for it's evaluation:
λt = Table[MathieuCharacteristicB[2 k, q], {k, m}];
flt = Table[With[{j = j},
MathieuS[MathieuCharacteristicB[2 k, q], q, ArcCos[#]] &], {k, m}];
The problem is, I do not get the expected eigenvalues!
λ
(* {4.0708, 17.3259, 39.1877} *)
N[λt]
(* {3.85298, 16.0581, 36.0254} *)
And of course, plotting shows that the eigenequation is not satisfied at all:
With[{u = fl[[1]], b = λ[[1]]},
Plot[(1 - ζ^2) u''[ζ] - ζ u'[ζ] + (b + 2 q - 4 q ζ^2) u[ζ], {ζ, 0, 1}]]
With[{u = flt[[1]], b = λt[[1]]},
Plot[(1 - ζ^2) u''[ζ] - ζ u'[ζ] + (b + 2 q - 4 q ζ^2) u[ζ], {ζ, 0, 1}]]
What was wrong with my attempt? If I can get this example to work, I should be able to apply it to my actual, more complicated problem, so any Good Ideas would be welcome.
differential-equations finite-element-method
New contributor
$endgroup$
add a comment |
$begingroup$
To be able to apply the differentialequation capabilities of Mathematica to my graduate thesis, I am trying to apply NDEigensystem to an eigenproblem whose solution I know, but I am having some trouble doing so.
As a test problem, I am using an algebraic version of the Mathieu equation,
$$(1-zeta^{2})w^{primeprime}-zeta w^{prime}+left(a+2q-4qzeta^{2}right)w=0$$
For this example I set $q=4/3$ and take only the first three eigenpairs:
m = 3; q = 4/3;
op = -(1 - ζ^2) u''[ζ] + ζ u'[ζ] + 2 q (2 ζ^2 - 1) u[ζ];
bc = DirichletCondition[u[ζ] == 0, True];
{λ, fl} = NDEigensystem[{op, bc}, u, {ζ, 0, 1}, m];
I chose the Mathieu equation as a nontrivial example as Mathematica already has a function for it's evaluation:
λt = Table[MathieuCharacteristicB[2 k, q], {k, m}];
flt = Table[With[{j = j},
MathieuS[MathieuCharacteristicB[2 k, q], q, ArcCos[#]] &], {k, m}];
The problem is, I do not get the expected eigenvalues!
λ
(* {4.0708, 17.3259, 39.1877} *)
N[λt]
(* {3.85298, 16.0581, 36.0254} *)
And of course, plotting shows that the eigenequation is not satisfied at all:
With[{u = fl[[1]], b = λ[[1]]},
Plot[(1 - ζ^2) u''[ζ] - ζ u'[ζ] + (b + 2 q - 4 q ζ^2) u[ζ], {ζ, 0, 1}]]
With[{u = flt[[1]], b = λt[[1]]},
Plot[(1 - ζ^2) u''[ζ] - ζ u'[ζ] + (b + 2 q - 4 q ζ^2) u[ζ], {ζ, 0, 1}]]
What was wrong with my attempt? If I can get this example to work, I should be able to apply it to my actual, more complicated problem, so any Good Ideas would be welcome.
differential-equations finite-element-method
New contributor
$endgroup$
add a comment |
$begingroup$
To be able to apply the differentialequation capabilities of Mathematica to my graduate thesis, I am trying to apply NDEigensystem to an eigenproblem whose solution I know, but I am having some trouble doing so.
As a test problem, I am using an algebraic version of the Mathieu equation,
$$(1-zeta^{2})w^{primeprime}-zeta w^{prime}+left(a+2q-4qzeta^{2}right)w=0$$
For this example I set $q=4/3$ and take only the first three eigenpairs:
m = 3; q = 4/3;
op = -(1 - ζ^2) u''[ζ] + ζ u'[ζ] + 2 q (2 ζ^2 - 1) u[ζ];
bc = DirichletCondition[u[ζ] == 0, True];
{λ, fl} = NDEigensystem[{op, bc}, u, {ζ, 0, 1}, m];
I chose the Mathieu equation as a nontrivial example as Mathematica already has a function for it's evaluation:
λt = Table[MathieuCharacteristicB[2 k, q], {k, m}];
flt = Table[With[{j = j},
MathieuS[MathieuCharacteristicB[2 k, q], q, ArcCos[#]] &], {k, m}];
The problem is, I do not get the expected eigenvalues!
λ
(* {4.0708, 17.3259, 39.1877} *)
N[λt]
(* {3.85298, 16.0581, 36.0254} *)
And of course, plotting shows that the eigenequation is not satisfied at all:
With[{u = fl[[1]], b = λ[[1]]},
Plot[(1 - ζ^2) u''[ζ] - ζ u'[ζ] + (b + 2 q - 4 q ζ^2) u[ζ], {ζ, 0, 1}]]
With[{u = flt[[1]], b = λt[[1]]},
Plot[(1 - ζ^2) u''[ζ] - ζ u'[ζ] + (b + 2 q - 4 q ζ^2) u[ζ], {ζ, 0, 1}]]
What was wrong with my attempt? If I can get this example to work, I should be able to apply it to my actual, more complicated problem, so any Good Ideas would be welcome.
differential-equations finite-element-method
New contributor
$endgroup$
To be able to apply the differentialequation capabilities of Mathematica to my graduate thesis, I am trying to apply NDEigensystem to an eigenproblem whose solution I know, but I am having some trouble doing so.
As a test problem, I am using an algebraic version of the Mathieu equation,
$$(1-zeta^{2})w^{primeprime}-zeta w^{prime}+left(a+2q-4qzeta^{2}right)w=0$$
For this example I set $q=4/3$ and take only the first three eigenpairs:
m = 3; q = 4/3;
op = -(1 - ζ^2) u''[ζ] + ζ u'[ζ] + 2 q (2 ζ^2 - 1) u[ζ];
bc = DirichletCondition[u[ζ] == 0, True];
{λ, fl} = NDEigensystem[{op, bc}, u, {ζ, 0, 1}, m];
I chose the Mathieu equation as a nontrivial example as Mathematica already has a function for it's evaluation:
λt = Table[MathieuCharacteristicB[2 k, q], {k, m}];
flt = Table[With[{j = j},
MathieuS[MathieuCharacteristicB[2 k, q], q, ArcCos[#]] &], {k, m}];
The problem is, I do not get the expected eigenvalues!
λ
(* {4.0708, 17.3259, 39.1877} *)
N[λt]
(* {3.85298, 16.0581, 36.0254} *)
And of course, plotting shows that the eigenequation is not satisfied at all:
With[{u = fl[[1]], b = λ[[1]]},
Plot[(1 - ζ^2) u''[ζ] - ζ u'[ζ] + (b + 2 q - 4 q ζ^2) u[ζ], {ζ, 0, 1}]]
With[{u = flt[[1]], b = λt[[1]]},
Plot[(1 - ζ^2) u''[ζ] - ζ u'[ζ] + (b + 2 q - 4 q ζ^2) u[ζ], {ζ, 0, 1}]]
What was wrong with my attempt? If I can get this example to work, I should be able to apply it to my actual, more complicated problem, so any Good Ideas would be welcome.
differential-equations finite-element-method
differential-equations finite-element-method
New contributor
New contributor
edited 1 hour ago
user21
21k55998
21k55998
New contributor
asked 2 hours ago
宮川園子宮川園子
211
211
New contributor
New contributor
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
If you refine the mesh, you will get closer:
m = 3; q = 4/3;
op = -(1 - [Zeta]^2) u''[[Zeta]] + [Zeta] u'[[Zeta]] +
2 q (2 [Zeta]^2 - 1) u[[Zeta]];
bc = DirichletCondition[u[[Zeta]] == 0, True];
{[Lambda], fl} =
NDEigensystem[{op, bc}, u, {[Zeta], 0, 1}, m,
Method -> {"PDEDiscretization" -> {"FiniteElement", {"MeshOptions"
-> {"MaxCellMeasure" -> 0.00001}}}}];
[Lambda]
{3.855, 16.074, 36.064}
[Lambda]t = Table[MathieuCharacteristicB[2 k, q], {k, m}];
flt = Table[
With[{j = j},
MathieuS[MathieuCharacteristicB[2 k, q], q, ArcCos[#]] &], {k, m}];
[Lambda]t // N
{3.852, 16.058, 36.025}
$endgroup$
add a comment |
$begingroup$
It looks to me like NDEigensystem
is struggling with the singularity at $zeta=1$, as does the method that I'm going to show. But perhaps it'll be useful for you, at least as a cross-check.
I have a package for numerically calculating solutions of eigenvalue problems using the Evans function via the method of compound matrices, which is hosted on github. See my answers to other questions, the example notebook on the github or this introduction for some more details.
First we install the package (only need to do this the first time):
Needs["PacletManager`"]
PacletInstall["CompoundMatrixMethod",
"Site" -> "http://raw.githubusercontent.com/paclets/Repository/master"]
Then we first need to turn the ODEs into a matrix form $mathbf{y}'=mathbf{A} cdot mathbf{y}$, using my function ToMatrixSystem
:
Needs["CompoundMatrixMethod`"]
sys[ζend_] = ToMatrixSystem[op == a u[ζ], {u[0] == 0, u[ζend] == 0}, u, {ζ, 0, ζend}, a]
Now the function Evans will calculate the Evans function (also known as the Miss-Distance function) for any given value of $a$ and $zeta_{end}$; this is an analytic function whose roots coincide with eigenvalues of the original equation.
Plugging in $zeta_{end} = 1$ fails due to the singularity, but you can try moving the endpoint slightly away:
FindRoot[Evans[a, sys[1 - 10^-3]], {a, 3}]
(* {a -> 4.00335} *)
Moving the endpoint closer approaches the correct value, but I can't get the exact value with this method.
FindRoot[Evans[a, sys[1 - 10^-10], WorkingPrecision -> 30], {a, 3},
WorkingPrecision -> 30] // Quiet
(* {a -> 3.85301} *)
You can see the same effect for the other roots.
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "387"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
宮川園子 is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f196891%2fusing-ndeigensystem-to-solve-the-mathieu-equation%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
If you refine the mesh, you will get closer:
m = 3; q = 4/3;
op = -(1 - [Zeta]^2) u''[[Zeta]] + [Zeta] u'[[Zeta]] +
2 q (2 [Zeta]^2 - 1) u[[Zeta]];
bc = DirichletCondition[u[[Zeta]] == 0, True];
{[Lambda], fl} =
NDEigensystem[{op, bc}, u, {[Zeta], 0, 1}, m,
Method -> {"PDEDiscretization" -> {"FiniteElement", {"MeshOptions"
-> {"MaxCellMeasure" -> 0.00001}}}}];
[Lambda]
{3.855, 16.074, 36.064}
[Lambda]t = Table[MathieuCharacteristicB[2 k, q], {k, m}];
flt = Table[
With[{j = j},
MathieuS[MathieuCharacteristicB[2 k, q], q, ArcCos[#]] &], {k, m}];
[Lambda]t // N
{3.852, 16.058, 36.025}
$endgroup$
add a comment |
$begingroup$
If you refine the mesh, you will get closer:
m = 3; q = 4/3;
op = -(1 - [Zeta]^2) u''[[Zeta]] + [Zeta] u'[[Zeta]] +
2 q (2 [Zeta]^2 - 1) u[[Zeta]];
bc = DirichletCondition[u[[Zeta]] == 0, True];
{[Lambda], fl} =
NDEigensystem[{op, bc}, u, {[Zeta], 0, 1}, m,
Method -> {"PDEDiscretization" -> {"FiniteElement", {"MeshOptions"
-> {"MaxCellMeasure" -> 0.00001}}}}];
[Lambda]
{3.855, 16.074, 36.064}
[Lambda]t = Table[MathieuCharacteristicB[2 k, q], {k, m}];
flt = Table[
With[{j = j},
MathieuS[MathieuCharacteristicB[2 k, q], q, ArcCos[#]] &], {k, m}];
[Lambda]t // N
{3.852, 16.058, 36.025}
$endgroup$
add a comment |
$begingroup$
If you refine the mesh, you will get closer:
m = 3; q = 4/3;
op = -(1 - [Zeta]^2) u''[[Zeta]] + [Zeta] u'[[Zeta]] +
2 q (2 [Zeta]^2 - 1) u[[Zeta]];
bc = DirichletCondition[u[[Zeta]] == 0, True];
{[Lambda], fl} =
NDEigensystem[{op, bc}, u, {[Zeta], 0, 1}, m,
Method -> {"PDEDiscretization" -> {"FiniteElement", {"MeshOptions"
-> {"MaxCellMeasure" -> 0.00001}}}}];
[Lambda]
{3.855, 16.074, 36.064}
[Lambda]t = Table[MathieuCharacteristicB[2 k, q], {k, m}];
flt = Table[
With[{j = j},
MathieuS[MathieuCharacteristicB[2 k, q], q, ArcCos[#]] &], {k, m}];
[Lambda]t // N
{3.852, 16.058, 36.025}
$endgroup$
If you refine the mesh, you will get closer:
m = 3; q = 4/3;
op = -(1 - [Zeta]^2) u''[[Zeta]] + [Zeta] u'[[Zeta]] +
2 q (2 [Zeta]^2 - 1) u[[Zeta]];
bc = DirichletCondition[u[[Zeta]] == 0, True];
{[Lambda], fl} =
NDEigensystem[{op, bc}, u, {[Zeta], 0, 1}, m,
Method -> {"PDEDiscretization" -> {"FiniteElement", {"MeshOptions"
-> {"MaxCellMeasure" -> 0.00001}}}}];
[Lambda]
{3.855, 16.074, 36.064}
[Lambda]t = Table[MathieuCharacteristicB[2 k, q], {k, m}];
flt = Table[
With[{j = j},
MathieuS[MathieuCharacteristicB[2 k, q], q, ArcCos[#]] &], {k, m}];
[Lambda]t // N
{3.852, 16.058, 36.025}
answered 57 mins ago
user21user21
21k55998
21k55998
add a comment |
add a comment |
$begingroup$
It looks to me like NDEigensystem
is struggling with the singularity at $zeta=1$, as does the method that I'm going to show. But perhaps it'll be useful for you, at least as a cross-check.
I have a package for numerically calculating solutions of eigenvalue problems using the Evans function via the method of compound matrices, which is hosted on github. See my answers to other questions, the example notebook on the github or this introduction for some more details.
First we install the package (only need to do this the first time):
Needs["PacletManager`"]
PacletInstall["CompoundMatrixMethod",
"Site" -> "http://raw.githubusercontent.com/paclets/Repository/master"]
Then we first need to turn the ODEs into a matrix form $mathbf{y}'=mathbf{A} cdot mathbf{y}$, using my function ToMatrixSystem
:
Needs["CompoundMatrixMethod`"]
sys[ζend_] = ToMatrixSystem[op == a u[ζ], {u[0] == 0, u[ζend] == 0}, u, {ζ, 0, ζend}, a]
Now the function Evans will calculate the Evans function (also known as the Miss-Distance function) for any given value of $a$ and $zeta_{end}$; this is an analytic function whose roots coincide with eigenvalues of the original equation.
Plugging in $zeta_{end} = 1$ fails due to the singularity, but you can try moving the endpoint slightly away:
FindRoot[Evans[a, sys[1 - 10^-3]], {a, 3}]
(* {a -> 4.00335} *)
Moving the endpoint closer approaches the correct value, but I can't get the exact value with this method.
FindRoot[Evans[a, sys[1 - 10^-10], WorkingPrecision -> 30], {a, 3},
WorkingPrecision -> 30] // Quiet
(* {a -> 3.85301} *)
You can see the same effect for the other roots.
$endgroup$
add a comment |
$begingroup$
It looks to me like NDEigensystem
is struggling with the singularity at $zeta=1$, as does the method that I'm going to show. But perhaps it'll be useful for you, at least as a cross-check.
I have a package for numerically calculating solutions of eigenvalue problems using the Evans function via the method of compound matrices, which is hosted on github. See my answers to other questions, the example notebook on the github or this introduction for some more details.
First we install the package (only need to do this the first time):
Needs["PacletManager`"]
PacletInstall["CompoundMatrixMethod",
"Site" -> "http://raw.githubusercontent.com/paclets/Repository/master"]
Then we first need to turn the ODEs into a matrix form $mathbf{y}'=mathbf{A} cdot mathbf{y}$, using my function ToMatrixSystem
:
Needs["CompoundMatrixMethod`"]
sys[ζend_] = ToMatrixSystem[op == a u[ζ], {u[0] == 0, u[ζend] == 0}, u, {ζ, 0, ζend}, a]
Now the function Evans will calculate the Evans function (also known as the Miss-Distance function) for any given value of $a$ and $zeta_{end}$; this is an analytic function whose roots coincide with eigenvalues of the original equation.
Plugging in $zeta_{end} = 1$ fails due to the singularity, but you can try moving the endpoint slightly away:
FindRoot[Evans[a, sys[1 - 10^-3]], {a, 3}]
(* {a -> 4.00335} *)
Moving the endpoint closer approaches the correct value, but I can't get the exact value with this method.
FindRoot[Evans[a, sys[1 - 10^-10], WorkingPrecision -> 30], {a, 3},
WorkingPrecision -> 30] // Quiet
(* {a -> 3.85301} *)
You can see the same effect for the other roots.
$endgroup$
add a comment |
$begingroup$
It looks to me like NDEigensystem
is struggling with the singularity at $zeta=1$, as does the method that I'm going to show. But perhaps it'll be useful for you, at least as a cross-check.
I have a package for numerically calculating solutions of eigenvalue problems using the Evans function via the method of compound matrices, which is hosted on github. See my answers to other questions, the example notebook on the github or this introduction for some more details.
First we install the package (only need to do this the first time):
Needs["PacletManager`"]
PacletInstall["CompoundMatrixMethod",
"Site" -> "http://raw.githubusercontent.com/paclets/Repository/master"]
Then we first need to turn the ODEs into a matrix form $mathbf{y}'=mathbf{A} cdot mathbf{y}$, using my function ToMatrixSystem
:
Needs["CompoundMatrixMethod`"]
sys[ζend_] = ToMatrixSystem[op == a u[ζ], {u[0] == 0, u[ζend] == 0}, u, {ζ, 0, ζend}, a]
Now the function Evans will calculate the Evans function (also known as the Miss-Distance function) for any given value of $a$ and $zeta_{end}$; this is an analytic function whose roots coincide with eigenvalues of the original equation.
Plugging in $zeta_{end} = 1$ fails due to the singularity, but you can try moving the endpoint slightly away:
FindRoot[Evans[a, sys[1 - 10^-3]], {a, 3}]
(* {a -> 4.00335} *)
Moving the endpoint closer approaches the correct value, but I can't get the exact value with this method.
FindRoot[Evans[a, sys[1 - 10^-10], WorkingPrecision -> 30], {a, 3},
WorkingPrecision -> 30] // Quiet
(* {a -> 3.85301} *)
You can see the same effect for the other roots.
$endgroup$
It looks to me like NDEigensystem
is struggling with the singularity at $zeta=1$, as does the method that I'm going to show. But perhaps it'll be useful for you, at least as a cross-check.
I have a package for numerically calculating solutions of eigenvalue problems using the Evans function via the method of compound matrices, which is hosted on github. See my answers to other questions, the example notebook on the github or this introduction for some more details.
First we install the package (only need to do this the first time):
Needs["PacletManager`"]
PacletInstall["CompoundMatrixMethod",
"Site" -> "http://raw.githubusercontent.com/paclets/Repository/master"]
Then we first need to turn the ODEs into a matrix form $mathbf{y}'=mathbf{A} cdot mathbf{y}$, using my function ToMatrixSystem
:
Needs["CompoundMatrixMethod`"]
sys[ζend_] = ToMatrixSystem[op == a u[ζ], {u[0] == 0, u[ζend] == 0}, u, {ζ, 0, ζend}, a]
Now the function Evans will calculate the Evans function (also known as the Miss-Distance function) for any given value of $a$ and $zeta_{end}$; this is an analytic function whose roots coincide with eigenvalues of the original equation.
Plugging in $zeta_{end} = 1$ fails due to the singularity, but you can try moving the endpoint slightly away:
FindRoot[Evans[a, sys[1 - 10^-3]], {a, 3}]
(* {a -> 4.00335} *)
Moving the endpoint closer approaches the correct value, but I can't get the exact value with this method.
FindRoot[Evans[a, sys[1 - 10^-10], WorkingPrecision -> 30], {a, 3},
WorkingPrecision -> 30] // Quiet
(* {a -> 3.85301} *)
You can see the same effect for the other roots.
answered 38 mins ago
KraZugKraZug
3,49821130
3,49821130
add a comment |
add a comment |
宮川園子 is a new contributor. Be nice, and check out our Code of Conduct.
宮川園子 is a new contributor. Be nice, and check out our Code of Conduct.
宮川園子 is a new contributor. Be nice, and check out our Code of Conduct.
宮川園子 is a new contributor. Be nice, and check out our Code of Conduct.
Thanks for contributing an answer to Mathematica Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f196891%2fusing-ndeigensystem-to-solve-the-mathieu-equation%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown