How to calculate the two limits? The Next CEO of Stack OverflowCompute $lim limits_{xtoinfty}...

How to avoid supervisors with prejudiced views?

Is it okay to majorly distort historical facts while writing a fiction story?

Computationally populating tables with probability data

Do scriptures give a method to recognize a truly self-realized person/jivanmukta?

Can Sneak Attack be used when hitting with an improvised weapon?

Is a distribution that is normal, but highly skewed, considered Gaussian?

Cannot shrink btrfs filesystem although there is still data and metadata space left : ERROR: unable to resize '/home': No space left on device

How to Implement Deterministic Encryption Safely in .NET

Does Germany produce more waste than the US?

Is fine stranded wire ok for main supply line?

What is the difference between "hamstring tendon" and "common hamstring tendon"?

How to use ReplaceAll on an expression that contains a rule

Yu-Gi-Oh cards in Python 3

Raspberry pi 3 B with Ubuntu 18.04 server arm64: what chip

Is there an equivalent of cd - for cp or mv

Is there a difference between "Fahrstuhl" and "Aufzug"?

How to get the last not-null value in an ordered column of a huge table?

What's the commands of Cisco query bgp neighbor table, bgp table and router table?

Asymptote: 3d graph over a disc

Airplane gently rocking its wings during whole flight

Is French Guiana a (hard) EU border?

Do I need to write [sic] when including a quotation with a number less than 10 that isn't written out?

Why don't programming languages automatically manage the synchronous/asynchronous problem?

From jafe to El-Guest



How to calculate the two limits?



The Next CEO of Stack OverflowCompute $lim limits_{xtoinfty} (frac{x-2}{x+2})^x$limits of the sequence $n/(n+1)$How to calculate $lim_{xto1}left(frac{1+cos(pi x)}{tan^2(pi x)}right)^{!x^2}$Calculate the limit of integralHow to evaluate $lim_{xtoinfty}arctan (4/x)/ |arcsin (-3/x)|$?Is there a way to get at this limit problem algebraically?Calculate $lim_{x to infty}(x+1)e^{-2x}$How to calculate $lim_{nto infty } frac{n^n}{n!^2}$?Calculate the limit: $lim limits_{n rightarrow infty } frac {4(n+3)!-n!}{n((n+2)!-(n-1)!)}$How to solve the limit $limlimits_{xto infty} (x arctan x - frac{xpi}{2})$












3












$begingroup$



I got stuck on two exercises below
$$
limlimits_{xrightarrow +infty} left(frac{2}{pi} arctan x right)^x \
lim_{xrightarrow 3^+} frac{cos x ln(x-3)}{ln(e^x-e^3)}
$$




For the first one , let $y=(frac{2}{pi} arctan x )^x $, so $ln y =xln (frac{2}{pi} arctan x )$, the right part is $infty cdot 0$ type, but seemly, the L 'hopital's rule is useless. PS: I know the $infty cdot 0$ can be become to $frac{infty}{infty}$ or $frac{0}{0}$. But when I use the L 'hopital's rule to the $frac{infty}{infty}$ or $frac{0}{0}$ the calculation is complex and useless.



For the second one , it is $frac{infty}{infty}$ type, also useless the L 'hopital's rule is. How to calculate it ?










share|cite











$endgroup$












  • $begingroup$
    For $0timesinfty$ types, you can algebraically transform them into either $frac{0}{0}$ or $frac{infty}{infty}$, where you can try using L'Hopital's (though it may not help): just remember that $ab = frac{a}{ frac{1}{b} }$. And, L'Hopital's Rule is applicable for $frac{infty}{infty}$ indeterminates...
    $endgroup$
    – Arturo Magidin
    2 hours ago
















3












$begingroup$



I got stuck on two exercises below
$$
limlimits_{xrightarrow +infty} left(frac{2}{pi} arctan x right)^x \
lim_{xrightarrow 3^+} frac{cos x ln(x-3)}{ln(e^x-e^3)}
$$




For the first one , let $y=(frac{2}{pi} arctan x )^x $, so $ln y =xln (frac{2}{pi} arctan x )$, the right part is $infty cdot 0$ type, but seemly, the L 'hopital's rule is useless. PS: I know the $infty cdot 0$ can be become to $frac{infty}{infty}$ or $frac{0}{0}$. But when I use the L 'hopital's rule to the $frac{infty}{infty}$ or $frac{0}{0}$ the calculation is complex and useless.



For the second one , it is $frac{infty}{infty}$ type, also useless the L 'hopital's rule is. How to calculate it ?










share|cite











$endgroup$












  • $begingroup$
    For $0timesinfty$ types, you can algebraically transform them into either $frac{0}{0}$ or $frac{infty}{infty}$, where you can try using L'Hopital's (though it may not help): just remember that $ab = frac{a}{ frac{1}{b} }$. And, L'Hopital's Rule is applicable for $frac{infty}{infty}$ indeterminates...
    $endgroup$
    – Arturo Magidin
    2 hours ago














3












3








3





$begingroup$



I got stuck on two exercises below
$$
limlimits_{xrightarrow +infty} left(frac{2}{pi} arctan x right)^x \
lim_{xrightarrow 3^+} frac{cos x ln(x-3)}{ln(e^x-e^3)}
$$




For the first one , let $y=(frac{2}{pi} arctan x )^x $, so $ln y =xln (frac{2}{pi} arctan x )$, the right part is $infty cdot 0$ type, but seemly, the L 'hopital's rule is useless. PS: I know the $infty cdot 0$ can be become to $frac{infty}{infty}$ or $frac{0}{0}$. But when I use the L 'hopital's rule to the $frac{infty}{infty}$ or $frac{0}{0}$ the calculation is complex and useless.



For the second one , it is $frac{infty}{infty}$ type, also useless the L 'hopital's rule is. How to calculate it ?










share|cite











$endgroup$





I got stuck on two exercises below
$$
limlimits_{xrightarrow +infty} left(frac{2}{pi} arctan x right)^x \
lim_{xrightarrow 3^+} frac{cos x ln(x-3)}{ln(e^x-e^3)}
$$




For the first one , let $y=(frac{2}{pi} arctan x )^x $, so $ln y =xln (frac{2}{pi} arctan x )$, the right part is $infty cdot 0$ type, but seemly, the L 'hopital's rule is useless. PS: I know the $infty cdot 0$ can be become to $frac{infty}{infty}$ or $frac{0}{0}$. But when I use the L 'hopital's rule to the $frac{infty}{infty}$ or $frac{0}{0}$ the calculation is complex and useless.



For the second one , it is $frac{infty}{infty}$ type, also useless the L 'hopital's rule is. How to calculate it ?







limits






share|cite















share|cite













share|cite




share|cite








edited 1 hour ago







lanse7pty

















asked 2 hours ago









lanse7ptylanse7pty

1,8411823




1,8411823












  • $begingroup$
    For $0timesinfty$ types, you can algebraically transform them into either $frac{0}{0}$ or $frac{infty}{infty}$, where you can try using L'Hopital's (though it may not help): just remember that $ab = frac{a}{ frac{1}{b} }$. And, L'Hopital's Rule is applicable for $frac{infty}{infty}$ indeterminates...
    $endgroup$
    – Arturo Magidin
    2 hours ago


















  • $begingroup$
    For $0timesinfty$ types, you can algebraically transform them into either $frac{0}{0}$ or $frac{infty}{infty}$, where you can try using L'Hopital's (though it may not help): just remember that $ab = frac{a}{ frac{1}{b} }$. And, L'Hopital's Rule is applicable for $frac{infty}{infty}$ indeterminates...
    $endgroup$
    – Arturo Magidin
    2 hours ago
















$begingroup$
For $0timesinfty$ types, you can algebraically transform them into either $frac{0}{0}$ or $frac{infty}{infty}$, where you can try using L'Hopital's (though it may not help): just remember that $ab = frac{a}{ frac{1}{b} }$. And, L'Hopital's Rule is applicable for $frac{infty}{infty}$ indeterminates...
$endgroup$
– Arturo Magidin
2 hours ago




$begingroup$
For $0timesinfty$ types, you can algebraically transform them into either $frac{0}{0}$ or $frac{infty}{infty}$, where you can try using L'Hopital's (though it may not help): just remember that $ab = frac{a}{ frac{1}{b} }$. And, L'Hopital's Rule is applicable for $frac{infty}{infty}$ indeterminates...
$endgroup$
– Arturo Magidin
2 hours ago










4 Answers
4






active

oldest

votes


















2












$begingroup$

Rewrite $inftycdot 0$ as $infty cdot dfrac{1}{infty}$. Now you can apply L'Hopital's rule: $$lim_{xto +infty}dfrac{left(ln 2/picdotarctan x right)}{1/x}=lim_{xto +infty}dfrac{pi/2cdot arctan x}{-1/x^2}cdot dfrac{1}{1+x^2}=-dfrac{pi }{2}lim_{xto +infty}arctan xcdot dfrac{x^2}{1+x^2}$$






share|cite|improve this answer











$endgroup$





















    1












    $begingroup$

    Without L'Hospital
    $$y=left(frac{2}{pi} arctan (x) right)^ximplies log(y)=x logleft(frac{2}{pi} arctan (x) right) $$



    Now, by Taylor for large values of $x$
    $$arctan (x)=frac{pi }{2}-frac{1}{x}+frac{1}{3 x^3}+Oleft(frac{1}{x^4}right)$$
    $$frac{2}{pi} arctan (x) =1-frac{2}{pi x}+frac{2}{3 pi x^3}+Oleft(frac{1}{x^4}right)$$ Taylor again
    $$logleft(frac{2}{pi} arctan (x) right)= -frac{2}{pi x}-frac{2}{pi ^2 x^2}+Oleft(frac{1}{x^3}right)$$
    $$log(y)=xlogleft(frac{2}{pi} arctan (x) right)= -frac{2}{pi }-frac{2}{pi ^2 x}+Oleft(frac{1}{x^2}right)$$ Just continue with Taylor using $y=e^{log(y)}$ if you want to see not only the limit but also how it is approached






    share|cite|improve this answer









    $endgroup$





















      0












      $begingroup$

      I believe you can apply L'hopital's rule for an indeterminate form like $frac{infty}{infty}$.






      share|cite|improve this answer









      $endgroup$





















        0












        $begingroup$

        You can solve the first one using




        • $arctan x + operatorname{arccot}x = frac{pi}{2}$

        • $lim_{yto 0}(1-y)^{1/y} = e^{-1}$

        • $xoperatorname{arccot}x stackrel{stackrel{x =cot u}{uto 0^+}}{=} cot ucdot u = cos ucdot frac{u}{sin u} stackrel{u to 0^+}{longrightarrow} 1$


        begin{eqnarray*} left(frac{2}{pi} arctan x right)^x
        & stackrel{arctan x = frac{pi}{2}-operatorname{arccot}x}{=} & left( underbrace{left(1- frac{2}{pi}operatorname{arccot}xright)^{frac{pi}{2operatorname{arccot}x}}}_{stackrel{x to +infty}{longrightarrow} e^{-1}} right)^{frac{2}{pi}underbrace{xoperatorname{arccot}x}_{stackrel{x to +infty}{longrightarrow} 1}} \
        & stackrel{x to +infty}{longrightarrow} & e^{-frac{2}{pi}}
        end{eqnarray*}



        The second limit is quite straight forward as $lim_{xto 3+}cos x = cos 3$. Just consider





        • $frac{ln(x-3)}{ln(e^x-e^3)}$ and apply L'Hospital.






        share|cite









        $endgroup$














          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3170200%2fhow-to-calculate-the-two-limits%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          4 Answers
          4






          active

          oldest

          votes








          4 Answers
          4






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          2












          $begingroup$

          Rewrite $inftycdot 0$ as $infty cdot dfrac{1}{infty}$. Now you can apply L'Hopital's rule: $$lim_{xto +infty}dfrac{left(ln 2/picdotarctan x right)}{1/x}=lim_{xto +infty}dfrac{pi/2cdot arctan x}{-1/x^2}cdot dfrac{1}{1+x^2}=-dfrac{pi }{2}lim_{xto +infty}arctan xcdot dfrac{x^2}{1+x^2}$$






          share|cite|improve this answer











          $endgroup$


















            2












            $begingroup$

            Rewrite $inftycdot 0$ as $infty cdot dfrac{1}{infty}$. Now you can apply L'Hopital's rule: $$lim_{xto +infty}dfrac{left(ln 2/picdotarctan x right)}{1/x}=lim_{xto +infty}dfrac{pi/2cdot arctan x}{-1/x^2}cdot dfrac{1}{1+x^2}=-dfrac{pi }{2}lim_{xto +infty}arctan xcdot dfrac{x^2}{1+x^2}$$






            share|cite|improve this answer











            $endgroup$
















              2












              2








              2





              $begingroup$

              Rewrite $inftycdot 0$ as $infty cdot dfrac{1}{infty}$. Now you can apply L'Hopital's rule: $$lim_{xto +infty}dfrac{left(ln 2/picdotarctan x right)}{1/x}=lim_{xto +infty}dfrac{pi/2cdot arctan x}{-1/x^2}cdot dfrac{1}{1+x^2}=-dfrac{pi }{2}lim_{xto +infty}arctan xcdot dfrac{x^2}{1+x^2}$$






              share|cite|improve this answer











              $endgroup$



              Rewrite $inftycdot 0$ as $infty cdot dfrac{1}{infty}$. Now you can apply L'Hopital's rule: $$lim_{xto +infty}dfrac{left(ln 2/picdotarctan x right)}{1/x}=lim_{xto +infty}dfrac{pi/2cdot arctan x}{-1/x^2}cdot dfrac{1}{1+x^2}=-dfrac{pi }{2}lim_{xto +infty}arctan xcdot dfrac{x^2}{1+x^2}$$







              share|cite|improve this answer














              share|cite|improve this answer



              share|cite|improve this answer








              edited 1 hour ago

























              answered 2 hours ago









              Paras KhoslaParas Khosla

              2,736423




              2,736423























                  1












                  $begingroup$

                  Without L'Hospital
                  $$y=left(frac{2}{pi} arctan (x) right)^ximplies log(y)=x logleft(frac{2}{pi} arctan (x) right) $$



                  Now, by Taylor for large values of $x$
                  $$arctan (x)=frac{pi }{2}-frac{1}{x}+frac{1}{3 x^3}+Oleft(frac{1}{x^4}right)$$
                  $$frac{2}{pi} arctan (x) =1-frac{2}{pi x}+frac{2}{3 pi x^3}+Oleft(frac{1}{x^4}right)$$ Taylor again
                  $$logleft(frac{2}{pi} arctan (x) right)= -frac{2}{pi x}-frac{2}{pi ^2 x^2}+Oleft(frac{1}{x^3}right)$$
                  $$log(y)=xlogleft(frac{2}{pi} arctan (x) right)= -frac{2}{pi }-frac{2}{pi ^2 x}+Oleft(frac{1}{x^2}right)$$ Just continue with Taylor using $y=e^{log(y)}$ if you want to see not only the limit but also how it is approached






                  share|cite|improve this answer









                  $endgroup$


















                    1












                    $begingroup$

                    Without L'Hospital
                    $$y=left(frac{2}{pi} arctan (x) right)^ximplies log(y)=x logleft(frac{2}{pi} arctan (x) right) $$



                    Now, by Taylor for large values of $x$
                    $$arctan (x)=frac{pi }{2}-frac{1}{x}+frac{1}{3 x^3}+Oleft(frac{1}{x^4}right)$$
                    $$frac{2}{pi} arctan (x) =1-frac{2}{pi x}+frac{2}{3 pi x^3}+Oleft(frac{1}{x^4}right)$$ Taylor again
                    $$logleft(frac{2}{pi} arctan (x) right)= -frac{2}{pi x}-frac{2}{pi ^2 x^2}+Oleft(frac{1}{x^3}right)$$
                    $$log(y)=xlogleft(frac{2}{pi} arctan (x) right)= -frac{2}{pi }-frac{2}{pi ^2 x}+Oleft(frac{1}{x^2}right)$$ Just continue with Taylor using $y=e^{log(y)}$ if you want to see not only the limit but also how it is approached






                    share|cite|improve this answer









                    $endgroup$
















                      1












                      1








                      1





                      $begingroup$

                      Without L'Hospital
                      $$y=left(frac{2}{pi} arctan (x) right)^ximplies log(y)=x logleft(frac{2}{pi} arctan (x) right) $$



                      Now, by Taylor for large values of $x$
                      $$arctan (x)=frac{pi }{2}-frac{1}{x}+frac{1}{3 x^3}+Oleft(frac{1}{x^4}right)$$
                      $$frac{2}{pi} arctan (x) =1-frac{2}{pi x}+frac{2}{3 pi x^3}+Oleft(frac{1}{x^4}right)$$ Taylor again
                      $$logleft(frac{2}{pi} arctan (x) right)= -frac{2}{pi x}-frac{2}{pi ^2 x^2}+Oleft(frac{1}{x^3}right)$$
                      $$log(y)=xlogleft(frac{2}{pi} arctan (x) right)= -frac{2}{pi }-frac{2}{pi ^2 x}+Oleft(frac{1}{x^2}right)$$ Just continue with Taylor using $y=e^{log(y)}$ if you want to see not only the limit but also how it is approached






                      share|cite|improve this answer









                      $endgroup$



                      Without L'Hospital
                      $$y=left(frac{2}{pi} arctan (x) right)^ximplies log(y)=x logleft(frac{2}{pi} arctan (x) right) $$



                      Now, by Taylor for large values of $x$
                      $$arctan (x)=frac{pi }{2}-frac{1}{x}+frac{1}{3 x^3}+Oleft(frac{1}{x^4}right)$$
                      $$frac{2}{pi} arctan (x) =1-frac{2}{pi x}+frac{2}{3 pi x^3}+Oleft(frac{1}{x^4}right)$$ Taylor again
                      $$logleft(frac{2}{pi} arctan (x) right)= -frac{2}{pi x}-frac{2}{pi ^2 x^2}+Oleft(frac{1}{x^3}right)$$
                      $$log(y)=xlogleft(frac{2}{pi} arctan (x) right)= -frac{2}{pi }-frac{2}{pi ^2 x}+Oleft(frac{1}{x^2}right)$$ Just continue with Taylor using $y=e^{log(y)}$ if you want to see not only the limit but also how it is approached







                      share|cite|improve this answer












                      share|cite|improve this answer



                      share|cite|improve this answer










                      answered 1 hour ago









                      Claude LeiboviciClaude Leibovici

                      125k1158136




                      125k1158136























                          0












                          $begingroup$

                          I believe you can apply L'hopital's rule for an indeterminate form like $frac{infty}{infty}$.






                          share|cite|improve this answer









                          $endgroup$


















                            0












                            $begingroup$

                            I believe you can apply L'hopital's rule for an indeterminate form like $frac{infty}{infty}$.






                            share|cite|improve this answer









                            $endgroup$
















                              0












                              0








                              0





                              $begingroup$

                              I believe you can apply L'hopital's rule for an indeterminate form like $frac{infty}{infty}$.






                              share|cite|improve this answer









                              $endgroup$



                              I believe you can apply L'hopital's rule for an indeterminate form like $frac{infty}{infty}$.







                              share|cite|improve this answer












                              share|cite|improve this answer



                              share|cite|improve this answer










                              answered 2 hours ago









                              AdmuthAdmuth

                              285




                              285























                                  0












                                  $begingroup$

                                  You can solve the first one using




                                  • $arctan x + operatorname{arccot}x = frac{pi}{2}$

                                  • $lim_{yto 0}(1-y)^{1/y} = e^{-1}$

                                  • $xoperatorname{arccot}x stackrel{stackrel{x =cot u}{uto 0^+}}{=} cot ucdot u = cos ucdot frac{u}{sin u} stackrel{u to 0^+}{longrightarrow} 1$


                                  begin{eqnarray*} left(frac{2}{pi} arctan x right)^x
                                  & stackrel{arctan x = frac{pi}{2}-operatorname{arccot}x}{=} & left( underbrace{left(1- frac{2}{pi}operatorname{arccot}xright)^{frac{pi}{2operatorname{arccot}x}}}_{stackrel{x to +infty}{longrightarrow} e^{-1}} right)^{frac{2}{pi}underbrace{xoperatorname{arccot}x}_{stackrel{x to +infty}{longrightarrow} 1}} \
                                  & stackrel{x to +infty}{longrightarrow} & e^{-frac{2}{pi}}
                                  end{eqnarray*}



                                  The second limit is quite straight forward as $lim_{xto 3+}cos x = cos 3$. Just consider





                                  • $frac{ln(x-3)}{ln(e^x-e^3)}$ and apply L'Hospital.






                                  share|cite









                                  $endgroup$


















                                    0












                                    $begingroup$

                                    You can solve the first one using




                                    • $arctan x + operatorname{arccot}x = frac{pi}{2}$

                                    • $lim_{yto 0}(1-y)^{1/y} = e^{-1}$

                                    • $xoperatorname{arccot}x stackrel{stackrel{x =cot u}{uto 0^+}}{=} cot ucdot u = cos ucdot frac{u}{sin u} stackrel{u to 0^+}{longrightarrow} 1$


                                    begin{eqnarray*} left(frac{2}{pi} arctan x right)^x
                                    & stackrel{arctan x = frac{pi}{2}-operatorname{arccot}x}{=} & left( underbrace{left(1- frac{2}{pi}operatorname{arccot}xright)^{frac{pi}{2operatorname{arccot}x}}}_{stackrel{x to +infty}{longrightarrow} e^{-1}} right)^{frac{2}{pi}underbrace{xoperatorname{arccot}x}_{stackrel{x to +infty}{longrightarrow} 1}} \
                                    & stackrel{x to +infty}{longrightarrow} & e^{-frac{2}{pi}}
                                    end{eqnarray*}



                                    The second limit is quite straight forward as $lim_{xto 3+}cos x = cos 3$. Just consider





                                    • $frac{ln(x-3)}{ln(e^x-e^3)}$ and apply L'Hospital.






                                    share|cite









                                    $endgroup$
















                                      0












                                      0








                                      0





                                      $begingroup$

                                      You can solve the first one using




                                      • $arctan x + operatorname{arccot}x = frac{pi}{2}$

                                      • $lim_{yto 0}(1-y)^{1/y} = e^{-1}$

                                      • $xoperatorname{arccot}x stackrel{stackrel{x =cot u}{uto 0^+}}{=} cot ucdot u = cos ucdot frac{u}{sin u} stackrel{u to 0^+}{longrightarrow} 1$


                                      begin{eqnarray*} left(frac{2}{pi} arctan x right)^x
                                      & stackrel{arctan x = frac{pi}{2}-operatorname{arccot}x}{=} & left( underbrace{left(1- frac{2}{pi}operatorname{arccot}xright)^{frac{pi}{2operatorname{arccot}x}}}_{stackrel{x to +infty}{longrightarrow} e^{-1}} right)^{frac{2}{pi}underbrace{xoperatorname{arccot}x}_{stackrel{x to +infty}{longrightarrow} 1}} \
                                      & stackrel{x to +infty}{longrightarrow} & e^{-frac{2}{pi}}
                                      end{eqnarray*}



                                      The second limit is quite straight forward as $lim_{xto 3+}cos x = cos 3$. Just consider





                                      • $frac{ln(x-3)}{ln(e^x-e^3)}$ and apply L'Hospital.






                                      share|cite









                                      $endgroup$



                                      You can solve the first one using




                                      • $arctan x + operatorname{arccot}x = frac{pi}{2}$

                                      • $lim_{yto 0}(1-y)^{1/y} = e^{-1}$

                                      • $xoperatorname{arccot}x stackrel{stackrel{x =cot u}{uto 0^+}}{=} cot ucdot u = cos ucdot frac{u}{sin u} stackrel{u to 0^+}{longrightarrow} 1$


                                      begin{eqnarray*} left(frac{2}{pi} arctan x right)^x
                                      & stackrel{arctan x = frac{pi}{2}-operatorname{arccot}x}{=} & left( underbrace{left(1- frac{2}{pi}operatorname{arccot}xright)^{frac{pi}{2operatorname{arccot}x}}}_{stackrel{x to +infty}{longrightarrow} e^{-1}} right)^{frac{2}{pi}underbrace{xoperatorname{arccot}x}_{stackrel{x to +infty}{longrightarrow} 1}} \
                                      & stackrel{x to +infty}{longrightarrow} & e^{-frac{2}{pi}}
                                      end{eqnarray*}



                                      The second limit is quite straight forward as $lim_{xto 3+}cos x = cos 3$. Just consider





                                      • $frac{ln(x-3)}{ln(e^x-e^3)}$ and apply L'Hospital.







                                      share|cite












                                      share|cite



                                      share|cite










                                      answered 7 mins ago









                                      trancelocationtrancelocation

                                      13.4k1827




                                      13.4k1827






























                                          draft saved

                                          draft discarded




















































                                          Thanks for contributing an answer to Mathematics Stack Exchange!


                                          • Please be sure to answer the question. Provide details and share your research!

                                          But avoid



                                          • Asking for help, clarification, or responding to other answers.

                                          • Making statements based on opinion; back them up with references or personal experience.


                                          Use MathJax to format equations. MathJax reference.


                                          To learn more, see our tips on writing great answers.




                                          draft saved


                                          draft discarded














                                          StackExchange.ready(
                                          function () {
                                          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3170200%2fhow-to-calculate-the-two-limits%23new-answer', 'question_page');
                                          }
                                          );

                                          Post as a guest















                                          Required, but never shown





















































                                          Required, but never shown














                                          Required, but never shown












                                          Required, but never shown







                                          Required, but never shown

































                                          Required, but never shown














                                          Required, but never shown












                                          Required, but never shown







                                          Required, but never shown







                                          Popular posts from this blog

                                          Why does my Macbook overheat and use so much CPU and energy when on YouTube?Why do so many insist on using...

                                          How to prevent page numbers from appearing on glossaries?How to remove a dot and a page number in the...

                                          Puerta de Hutt Referencias Enlaces externos Menú de navegación15°58′00″S 5°42′00″O /...