How to determine the greatest d orbital splitting?How do I determine the crystal field splitting for an...
Print a physical multiplication table
Does the Shadow Magic sorcerer's Eyes of the Dark feature work on all Darkness spells or just his/her own?
Weird lines in Microsoft Word
Which partition to make active?
How to read string as hex number in bash?
What are the consequences of changing the number of hours in a day?
PTIJ: Where did Achashverosh's years wander off to?
Turning a hard to access nut?
Determine voltage drop over 10G resistors with cheap multimeter
Why is there so much iron?
Imaginary part of expression too difficult to calculate
Writing in a Christian voice
Do native speakers use "ultima" and "proxima" frequently in spoken English?
Knife as defense against stray dogs
How do you justify more code being written by following clean code practices?
Have the tides ever turned twice on any open problem?
Help with identifying unique aircraft over NE Pennsylvania
Are hand made posters acceptable in Academia?
What is the difference between something being completely legal and being completely decriminalized?
What is the reasoning behind standardization (dividing by standard deviation)?
When did hardware antialiasing start being available?
Is VPN a layer 3 concept?
Would mining huge amounts of resources on the Moon change its orbit?
How to test the sharpness of a knife?
How to determine the greatest d orbital splitting?
How do I determine the crystal field splitting for an arbitrary point group?How to determine peroxy oxygen?Iron chemistry: acetates for ebonizing woodHow can the intense color of potassium permanganate be explained with molecular orbital theory?How to determine the magnetic character of heteroleptic complexes?Why do better π-acceptor ligands cause smaller Δ(T) d-orbital splitting?How to Determine An Element's ColourWhat exactly is the d-orbital splitting and how does this affect the colors for transition metal compounds?Pattern to determine the maximum ionic charge for transition elements?Effect of oxidation state on d-orbital splitting
$begingroup$
This question comes specifically from an IB Chemistry HL Paper 1 in May 2018 TZ1, namely question 8.
Which complex has the greatest d orbital splitting?
It gives 4 Complexes $ce{[Fe(H_2O)_6]^{2+}}$, $ce{[Fe(H_2O)_6]^{3+}}$, $ce{[Co(H_2O)_6]^{3+}}$, $ce{[Cr(NH_3)_6]^{3+}}$ and it says that they give the colours green, orange, blue and violet respectively.
Initially I thought that the answer would be $ce{[Cr(NH_3)_6]^{3+}}$ because it gives the highest energy light, being violet. However, the answer is given as $ce{[Fe(H_2O)_6]^{3+}}$, why is this?
ions transition-metals oxidation-state color
$endgroup$
add a comment |
$begingroup$
This question comes specifically from an IB Chemistry HL Paper 1 in May 2018 TZ1, namely question 8.
Which complex has the greatest d orbital splitting?
It gives 4 Complexes $ce{[Fe(H_2O)_6]^{2+}}$, $ce{[Fe(H_2O)_6]^{3+}}$, $ce{[Co(H_2O)_6]^{3+}}$, $ce{[Cr(NH_3)_6]^{3+}}$ and it says that they give the colours green, orange, blue and violet respectively.
Initially I thought that the answer would be $ce{[Cr(NH_3)_6]^{3+}}$ because it gives the highest energy light, being violet. However, the answer is given as $ce{[Fe(H_2O)_6]^{3+}}$, why is this?
ions transition-metals oxidation-state color
$endgroup$
add a comment |
$begingroup$
This question comes specifically from an IB Chemistry HL Paper 1 in May 2018 TZ1, namely question 8.
Which complex has the greatest d orbital splitting?
It gives 4 Complexes $ce{[Fe(H_2O)_6]^{2+}}$, $ce{[Fe(H_2O)_6]^{3+}}$, $ce{[Co(H_2O)_6]^{3+}}$, $ce{[Cr(NH_3)_6]^{3+}}$ and it says that they give the colours green, orange, blue and violet respectively.
Initially I thought that the answer would be $ce{[Cr(NH_3)_6]^{3+}}$ because it gives the highest energy light, being violet. However, the answer is given as $ce{[Fe(H_2O)_6]^{3+}}$, why is this?
ions transition-metals oxidation-state color
$endgroup$
This question comes specifically from an IB Chemistry HL Paper 1 in May 2018 TZ1, namely question 8.
Which complex has the greatest d orbital splitting?
It gives 4 Complexes $ce{[Fe(H_2O)_6]^{2+}}$, $ce{[Fe(H_2O)_6]^{3+}}$, $ce{[Co(H_2O)_6]^{3+}}$, $ce{[Cr(NH_3)_6]^{3+}}$ and it says that they give the colours green, orange, blue and violet respectively.
Initially I thought that the answer would be $ce{[Cr(NH_3)_6]^{3+}}$ because it gives the highest energy light, being violet. However, the answer is given as $ce{[Fe(H_2O)_6]^{3+}}$, why is this?
ions transition-metals oxidation-state color
ions transition-metals oxidation-state color
edited 2 hours ago
Mathew Mahindaratne
1,44413
1,44413
asked 4 hours ago
Anthony PAnthony P
121
121
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
The colour at which the complex absorbs reflects the wavelength of the d–d* electronic transitions. However, this colour is not the same as the transmitted colour (which you see), but is instead complementary to the transmitted colour. Therefore, a complex that appears purple is actually absorbing lower-energy light than a complex that appears red.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "431"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fchemistry.stackexchange.com%2fquestions%2f111200%2fhow-to-determine-the-greatest-d-orbital-splitting%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The colour at which the complex absorbs reflects the wavelength of the d–d* electronic transitions. However, this colour is not the same as the transmitted colour (which you see), but is instead complementary to the transmitted colour. Therefore, a complex that appears purple is actually absorbing lower-energy light than a complex that appears red.
$endgroup$
add a comment |
$begingroup$
The colour at which the complex absorbs reflects the wavelength of the d–d* electronic transitions. However, this colour is not the same as the transmitted colour (which you see), but is instead complementary to the transmitted colour. Therefore, a complex that appears purple is actually absorbing lower-energy light than a complex that appears red.
$endgroup$
add a comment |
$begingroup$
The colour at which the complex absorbs reflects the wavelength of the d–d* electronic transitions. However, this colour is not the same as the transmitted colour (which you see), but is instead complementary to the transmitted colour. Therefore, a complex that appears purple is actually absorbing lower-energy light than a complex that appears red.
$endgroup$
The colour at which the complex absorbs reflects the wavelength of the d–d* electronic transitions. However, this colour is not the same as the transmitted colour (which you see), but is instead complementary to the transmitted colour. Therefore, a complex that appears purple is actually absorbing lower-energy light than a complex that appears red.
answered 4 hours ago
orthocresol♦orthocresol
39.6k7114242
39.6k7114242
add a comment |
add a comment |
Thanks for contributing an answer to Chemistry Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fchemistry.stackexchange.com%2fquestions%2f111200%2fhow-to-determine-the-greatest-d-orbital-splitting%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown