Imaginary part of expression too difficult to calculateFinding real and imaginary partsMathematica taking too...
Why doesn't the chatan sign the ketubah?
How do you justify more code being written by following clean code practices?
Why is participating in the European Parliamentary elections used as a threat?
Weird lines in Microsoft Word
How to test the sharpness of a knife?
Why are there no stars visible in cislunar space?
Single word to change groups
Why is this tree refusing to shed its dead leaves?
What is the reasoning behind standardization (dividing by standard deviation)?
PTIJ: Which Dr. Seuss books should one obtain?
Homology of the fiber
How to balance a monster modification (zombie)?
Friend wants my recommendation but I don't want to
Justification failure in beamer enumerate list
Why I don't get the wanted width of tcbox?
Imaginary part of expression too difficult to calculate
Print last inputted byte
Jem'Hadar, something strange about their life expectancy
Can "few" be used as a subject? If so, what is the rule?
How to remove space in section title at KOMA-Script
Pre-Employment Background Check With Consent For Future Checks
What is the difference between something being completely legal and being completely decriminalized?
Did Nintendo change its mind about 68000 SNES?
Do I need an EFI partition for each 18.04 ubuntu I have on my HD?
Imaginary part of expression too difficult to calculate
Finding real and imaginary partsMathematica taking too long to calculate recursive functionComplex Plot with Imaginary Part encoded in colorGetting the real part of a expressionAbout Complex Numbers, Real part and Imaginary part (symbolic calculus)Bug in HypergeometricPFQRegularized?Equivalence of ComplexExpand and assuming real argumentsSummation of complex and complex conjugate - elimination of imaginary partHow to get the real part of a complex expressionRoots of an expression
$begingroup$
I am trying to calculate the imaginary part of a long expression. It's a long enough expression that Mathematica "hangs" when you run:
imFUN2 = ComplexExpand[Im[expression]];
Is there something I can do that can help speed things up?
Here is my full code:
expression = -((I Ωc (4 γa^4 + 16 Δd^4 - 48 Δd^3 Δp + 48 Δd^2 Δp^2 - 16 Δd Δp^3 + 4 I γa^3
(3 Δc + 6 Δd - 4 Δp - Δs) - 16 Δd^3 Δs + 32 Δd^2 Δp Δs - 16 Δd Δp^2 Δs - 4 Δd^2 Ωc^2 +
4 Δd Δp Ωc^2 + 4 Δd Δs Ωc^2 - 4 I dephasing Δd Ωd^2 + 12 Δd^2 Ωd^2 +
4 I dephasing Δp Ωd^2 - 24 Δd Δp Ωd^2 + 12 Δp^2 Ωd^2 - 8 Δd Δs Ωd^2 +
8 Δp Δs Ωd^2 - Ωc^2 Ωd^2 + Ωd^4 + 4 Δc^2 (4 Δd^2 - 4 Δd Δp + Ωd^2) -
2 γa^2 (4 Δc^2 + 26 Δd^2 + 10 Δp^2 + 2 Δc (13 Δd - 7 Δp - 2 Δs) +
6 Δp Δs - 2 Δd (18 Δp + 5 Δs) - Ωc^2 + 4 Ωd^2) + 4 Δc (8 Δd^3 - 4 Δd^2 (4 Δp + Δs) -
(4 Δp + Δs) Ωd^2 + Δd (8 Δp^2 + 4 Δp Δs - Ωc^2 + 4 Ωd^2)) - 2 I γa (24 Δd^3 +
4 Δc^2 (3 Δd - Δp) - 4 Δp^3 - 4 Δp^2 Δs - 4 Δd^2 (13 Δp + 4 Δs) + Δp Ωc^2 + Δs Ωc^2 -
2 I dephasing Ωd^2 - 10 Δp Ωd^2 - 3 Δs Ωd^2 + Δc (36 Δd^2 + 8 Δp^2 + 4 Δp Δs -
4 Δd (11 Δp + 3 Δs) - Ωc^2 + 7 Ωd^2) + Δd (32 Δp^2 + 20 Δp Δs - 3 Ωc^2 + 10 Ωd^2))))/
((γa + 2 I Δd) (2 γa^2 - 4 Δc^2 + 4 Δd Δp - 4 Δp^2 + 4 Δd Δs - 8 Δp Δs - 4 Δs^2 +
2 I γa (3 Δc + Δd - 3 (Δp + Δs)) + Δc (-4 Δd + 8 (Δp + Δs)) + Ωd^2) (4 I γa^3 (Δc - Δp) -
16 Δc^2 Δd Δp - 16 Δc Δd^2 Δp + 16 Δc^2 Δp^2 + 48 Δc Δd Δp^2 + 16 Δd^2 Δp^2 - 32 Δc Δp^3 -
32 Δd Δp^3 + 16 Δp^4 - 4 Δc Δd Ωc^2 - 4 Δd^2 Ωc^2 + 8 Δc Δp Ωc^2 + 8 Δd Δp Ωc^2 -
8 Δp^2 Ωc^2 + Ωc^4 - 4 Δc^2 Ωd^2 - 4 Δc Δd Ωd^2 + 8 Δc Δp Ωd^2 + 8 Δd Δp Ωd^2 -
8 Δp^2 Ωd^2 - 2 Ωc^2 Ωd^2 + Ωd^4 + 2 γa^2 (-4 Δc^2 - 6 Δc Δd + 14 Δc Δp + 6 Δd Δp -
10 Δp^2 + Ωc^2 + Ωd^2) - 2 I γa (4 Δc^2 (Δd - 3 Δp) - 4 Δd^2 Δp + Δd (20 Δp^2 -
3 Ωc^2 - Ωd^2) + Δc (4 Δd^2 - 24 Δd Δp + 28 Δp^2 - 3 Ωc^2 - Ωd^2) + 4 Δp (-4 Δp^2 +
Ωc^2 + Ωd^2)) + 2 dephasing (2 γa^3 + 2 I γa^2 (2 Δc + 3 Δd - 5 Δp) + γa (-4 Δd^2 -
4 Δc (Δd - 3 Δp) + 20 Δd Δp - 16 Δp^2 + Ωc^2 + Ωd^2) + 2 I (4 Δd^2 Δp - 8 Δd Δp^2 +
4 Δp^3 - Δp Ωc^2 + Δd Ωd^2 - Δp Ωd^2 + Δc (4 Δd Δp - 4 Δp^2 + Ωd^2)))))) /.
{γa -> 1, dephasing -> 10^-4};
imFUN2 = ComplexExpand[Im[expression]];
performance-tuning simplifying-expressions complex
$endgroup$
add a comment |
$begingroup$
I am trying to calculate the imaginary part of a long expression. It's a long enough expression that Mathematica "hangs" when you run:
imFUN2 = ComplexExpand[Im[expression]];
Is there something I can do that can help speed things up?
Here is my full code:
expression = -((I Ωc (4 γa^4 + 16 Δd^4 - 48 Δd^3 Δp + 48 Δd^2 Δp^2 - 16 Δd Δp^3 + 4 I γa^3
(3 Δc + 6 Δd - 4 Δp - Δs) - 16 Δd^3 Δs + 32 Δd^2 Δp Δs - 16 Δd Δp^2 Δs - 4 Δd^2 Ωc^2 +
4 Δd Δp Ωc^2 + 4 Δd Δs Ωc^2 - 4 I dephasing Δd Ωd^2 + 12 Δd^2 Ωd^2 +
4 I dephasing Δp Ωd^2 - 24 Δd Δp Ωd^2 + 12 Δp^2 Ωd^2 - 8 Δd Δs Ωd^2 +
8 Δp Δs Ωd^2 - Ωc^2 Ωd^2 + Ωd^4 + 4 Δc^2 (4 Δd^2 - 4 Δd Δp + Ωd^2) -
2 γa^2 (4 Δc^2 + 26 Δd^2 + 10 Δp^2 + 2 Δc (13 Δd - 7 Δp - 2 Δs) +
6 Δp Δs - 2 Δd (18 Δp + 5 Δs) - Ωc^2 + 4 Ωd^2) + 4 Δc (8 Δd^3 - 4 Δd^2 (4 Δp + Δs) -
(4 Δp + Δs) Ωd^2 + Δd (8 Δp^2 + 4 Δp Δs - Ωc^2 + 4 Ωd^2)) - 2 I γa (24 Δd^3 +
4 Δc^2 (3 Δd - Δp) - 4 Δp^3 - 4 Δp^2 Δs - 4 Δd^2 (13 Δp + 4 Δs) + Δp Ωc^2 + Δs Ωc^2 -
2 I dephasing Ωd^2 - 10 Δp Ωd^2 - 3 Δs Ωd^2 + Δc (36 Δd^2 + 8 Δp^2 + 4 Δp Δs -
4 Δd (11 Δp + 3 Δs) - Ωc^2 + 7 Ωd^2) + Δd (32 Δp^2 + 20 Δp Δs - 3 Ωc^2 + 10 Ωd^2))))/
((γa + 2 I Δd) (2 γa^2 - 4 Δc^2 + 4 Δd Δp - 4 Δp^2 + 4 Δd Δs - 8 Δp Δs - 4 Δs^2 +
2 I γa (3 Δc + Δd - 3 (Δp + Δs)) + Δc (-4 Δd + 8 (Δp + Δs)) + Ωd^2) (4 I γa^3 (Δc - Δp) -
16 Δc^2 Δd Δp - 16 Δc Δd^2 Δp + 16 Δc^2 Δp^2 + 48 Δc Δd Δp^2 + 16 Δd^2 Δp^2 - 32 Δc Δp^3 -
32 Δd Δp^3 + 16 Δp^4 - 4 Δc Δd Ωc^2 - 4 Δd^2 Ωc^2 + 8 Δc Δp Ωc^2 + 8 Δd Δp Ωc^2 -
8 Δp^2 Ωc^2 + Ωc^4 - 4 Δc^2 Ωd^2 - 4 Δc Δd Ωd^2 + 8 Δc Δp Ωd^2 + 8 Δd Δp Ωd^2 -
8 Δp^2 Ωd^2 - 2 Ωc^2 Ωd^2 + Ωd^4 + 2 γa^2 (-4 Δc^2 - 6 Δc Δd + 14 Δc Δp + 6 Δd Δp -
10 Δp^2 + Ωc^2 + Ωd^2) - 2 I γa (4 Δc^2 (Δd - 3 Δp) - 4 Δd^2 Δp + Δd (20 Δp^2 -
3 Ωc^2 - Ωd^2) + Δc (4 Δd^2 - 24 Δd Δp + 28 Δp^2 - 3 Ωc^2 - Ωd^2) + 4 Δp (-4 Δp^2 +
Ωc^2 + Ωd^2)) + 2 dephasing (2 γa^3 + 2 I γa^2 (2 Δc + 3 Δd - 5 Δp) + γa (-4 Δd^2 -
4 Δc (Δd - 3 Δp) + 20 Δd Δp - 16 Δp^2 + Ωc^2 + Ωd^2) + 2 I (4 Δd^2 Δp - 8 Δd Δp^2 +
4 Δp^3 - Δp Ωc^2 + Δd Ωd^2 - Δp Ωd^2 + Δc (4 Δd Δp - 4 Δp^2 + Ωd^2)))))) /.
{γa -> 1, dephasing -> 10^-4};
imFUN2 = ComplexExpand[Im[expression]];
performance-tuning simplifying-expressions complex
$endgroup$
add a comment |
$begingroup$
I am trying to calculate the imaginary part of a long expression. It's a long enough expression that Mathematica "hangs" when you run:
imFUN2 = ComplexExpand[Im[expression]];
Is there something I can do that can help speed things up?
Here is my full code:
expression = -((I Ωc (4 γa^4 + 16 Δd^4 - 48 Δd^3 Δp + 48 Δd^2 Δp^2 - 16 Δd Δp^3 + 4 I γa^3
(3 Δc + 6 Δd - 4 Δp - Δs) - 16 Δd^3 Δs + 32 Δd^2 Δp Δs - 16 Δd Δp^2 Δs - 4 Δd^2 Ωc^2 +
4 Δd Δp Ωc^2 + 4 Δd Δs Ωc^2 - 4 I dephasing Δd Ωd^2 + 12 Δd^2 Ωd^2 +
4 I dephasing Δp Ωd^2 - 24 Δd Δp Ωd^2 + 12 Δp^2 Ωd^2 - 8 Δd Δs Ωd^2 +
8 Δp Δs Ωd^2 - Ωc^2 Ωd^2 + Ωd^4 + 4 Δc^2 (4 Δd^2 - 4 Δd Δp + Ωd^2) -
2 γa^2 (4 Δc^2 + 26 Δd^2 + 10 Δp^2 + 2 Δc (13 Δd - 7 Δp - 2 Δs) +
6 Δp Δs - 2 Δd (18 Δp + 5 Δs) - Ωc^2 + 4 Ωd^2) + 4 Δc (8 Δd^3 - 4 Δd^2 (4 Δp + Δs) -
(4 Δp + Δs) Ωd^2 + Δd (8 Δp^2 + 4 Δp Δs - Ωc^2 + 4 Ωd^2)) - 2 I γa (24 Δd^3 +
4 Δc^2 (3 Δd - Δp) - 4 Δp^3 - 4 Δp^2 Δs - 4 Δd^2 (13 Δp + 4 Δs) + Δp Ωc^2 + Δs Ωc^2 -
2 I dephasing Ωd^2 - 10 Δp Ωd^2 - 3 Δs Ωd^2 + Δc (36 Δd^2 + 8 Δp^2 + 4 Δp Δs -
4 Δd (11 Δp + 3 Δs) - Ωc^2 + 7 Ωd^2) + Δd (32 Δp^2 + 20 Δp Δs - 3 Ωc^2 + 10 Ωd^2))))/
((γa + 2 I Δd) (2 γa^2 - 4 Δc^2 + 4 Δd Δp - 4 Δp^2 + 4 Δd Δs - 8 Δp Δs - 4 Δs^2 +
2 I γa (3 Δc + Δd - 3 (Δp + Δs)) + Δc (-4 Δd + 8 (Δp + Δs)) + Ωd^2) (4 I γa^3 (Δc - Δp) -
16 Δc^2 Δd Δp - 16 Δc Δd^2 Δp + 16 Δc^2 Δp^2 + 48 Δc Δd Δp^2 + 16 Δd^2 Δp^2 - 32 Δc Δp^3 -
32 Δd Δp^3 + 16 Δp^4 - 4 Δc Δd Ωc^2 - 4 Δd^2 Ωc^2 + 8 Δc Δp Ωc^2 + 8 Δd Δp Ωc^2 -
8 Δp^2 Ωc^2 + Ωc^4 - 4 Δc^2 Ωd^2 - 4 Δc Δd Ωd^2 + 8 Δc Δp Ωd^2 + 8 Δd Δp Ωd^2 -
8 Δp^2 Ωd^2 - 2 Ωc^2 Ωd^2 + Ωd^4 + 2 γa^2 (-4 Δc^2 - 6 Δc Δd + 14 Δc Δp + 6 Δd Δp -
10 Δp^2 + Ωc^2 + Ωd^2) - 2 I γa (4 Δc^2 (Δd - 3 Δp) - 4 Δd^2 Δp + Δd (20 Δp^2 -
3 Ωc^2 - Ωd^2) + Δc (4 Δd^2 - 24 Δd Δp + 28 Δp^2 - 3 Ωc^2 - Ωd^2) + 4 Δp (-4 Δp^2 +
Ωc^2 + Ωd^2)) + 2 dephasing (2 γa^3 + 2 I γa^2 (2 Δc + 3 Δd - 5 Δp) + γa (-4 Δd^2 -
4 Δc (Δd - 3 Δp) + 20 Δd Δp - 16 Δp^2 + Ωc^2 + Ωd^2) + 2 I (4 Δd^2 Δp - 8 Δd Δp^2 +
4 Δp^3 - Δp Ωc^2 + Δd Ωd^2 - Δp Ωd^2 + Δc (4 Δd Δp - 4 Δp^2 + Ωd^2)))))) /.
{γa -> 1, dephasing -> 10^-4};
imFUN2 = ComplexExpand[Im[expression]];
performance-tuning simplifying-expressions complex
$endgroup$
I am trying to calculate the imaginary part of a long expression. It's a long enough expression that Mathematica "hangs" when you run:
imFUN2 = ComplexExpand[Im[expression]];
Is there something I can do that can help speed things up?
Here is my full code:
expression = -((I Ωc (4 γa^4 + 16 Δd^4 - 48 Δd^3 Δp + 48 Δd^2 Δp^2 - 16 Δd Δp^3 + 4 I γa^3
(3 Δc + 6 Δd - 4 Δp - Δs) - 16 Δd^3 Δs + 32 Δd^2 Δp Δs - 16 Δd Δp^2 Δs - 4 Δd^2 Ωc^2 +
4 Δd Δp Ωc^2 + 4 Δd Δs Ωc^2 - 4 I dephasing Δd Ωd^2 + 12 Δd^2 Ωd^2 +
4 I dephasing Δp Ωd^2 - 24 Δd Δp Ωd^2 + 12 Δp^2 Ωd^2 - 8 Δd Δs Ωd^2 +
8 Δp Δs Ωd^2 - Ωc^2 Ωd^2 + Ωd^4 + 4 Δc^2 (4 Δd^2 - 4 Δd Δp + Ωd^2) -
2 γa^2 (4 Δc^2 + 26 Δd^2 + 10 Δp^2 + 2 Δc (13 Δd - 7 Δp - 2 Δs) +
6 Δp Δs - 2 Δd (18 Δp + 5 Δs) - Ωc^2 + 4 Ωd^2) + 4 Δc (8 Δd^3 - 4 Δd^2 (4 Δp + Δs) -
(4 Δp + Δs) Ωd^2 + Δd (8 Δp^2 + 4 Δp Δs - Ωc^2 + 4 Ωd^2)) - 2 I γa (24 Δd^3 +
4 Δc^2 (3 Δd - Δp) - 4 Δp^3 - 4 Δp^2 Δs - 4 Δd^2 (13 Δp + 4 Δs) + Δp Ωc^2 + Δs Ωc^2 -
2 I dephasing Ωd^2 - 10 Δp Ωd^2 - 3 Δs Ωd^2 + Δc (36 Δd^2 + 8 Δp^2 + 4 Δp Δs -
4 Δd (11 Δp + 3 Δs) - Ωc^2 + 7 Ωd^2) + Δd (32 Δp^2 + 20 Δp Δs - 3 Ωc^2 + 10 Ωd^2))))/
((γa + 2 I Δd) (2 γa^2 - 4 Δc^2 + 4 Δd Δp - 4 Δp^2 + 4 Δd Δs - 8 Δp Δs - 4 Δs^2 +
2 I γa (3 Δc + Δd - 3 (Δp + Δs)) + Δc (-4 Δd + 8 (Δp + Δs)) + Ωd^2) (4 I γa^3 (Δc - Δp) -
16 Δc^2 Δd Δp - 16 Δc Δd^2 Δp + 16 Δc^2 Δp^2 + 48 Δc Δd Δp^2 + 16 Δd^2 Δp^2 - 32 Δc Δp^3 -
32 Δd Δp^3 + 16 Δp^4 - 4 Δc Δd Ωc^2 - 4 Δd^2 Ωc^2 + 8 Δc Δp Ωc^2 + 8 Δd Δp Ωc^2 -
8 Δp^2 Ωc^2 + Ωc^4 - 4 Δc^2 Ωd^2 - 4 Δc Δd Ωd^2 + 8 Δc Δp Ωd^2 + 8 Δd Δp Ωd^2 -
8 Δp^2 Ωd^2 - 2 Ωc^2 Ωd^2 + Ωd^4 + 2 γa^2 (-4 Δc^2 - 6 Δc Δd + 14 Δc Δp + 6 Δd Δp -
10 Δp^2 + Ωc^2 + Ωd^2) - 2 I γa (4 Δc^2 (Δd - 3 Δp) - 4 Δd^2 Δp + Δd (20 Δp^2 -
3 Ωc^2 - Ωd^2) + Δc (4 Δd^2 - 24 Δd Δp + 28 Δp^2 - 3 Ωc^2 - Ωd^2) + 4 Δp (-4 Δp^2 +
Ωc^2 + Ωd^2)) + 2 dephasing (2 γa^3 + 2 I γa^2 (2 Δc + 3 Δd - 5 Δp) + γa (-4 Δd^2 -
4 Δc (Δd - 3 Δp) + 20 Δd Δp - 16 Δp^2 + Ωc^2 + Ωd^2) + 2 I (4 Δd^2 Δp - 8 Δd Δp^2 +
4 Δp^3 - Δp Ωc^2 + Δd Ωd^2 - Δp Ωd^2 + Δc (4 Δd Δp - 4 Δp^2 + Ωd^2)))))) /.
{γa -> 1, dephasing -> 10^-4};
imFUN2 = ComplexExpand[Im[expression]];
performance-tuning simplifying-expressions complex
performance-tuning simplifying-expressions complex
edited 3 hours ago
MarcoB
37.5k556113
37.5k556113
asked 4 hours ago
Steven SagonaSteven Sagona
1866
1866
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Not an elegant solution but it works
num = Numerator[expression];
den = Denominator[expression];
{reNum, imNum} = ComplexExpand[ReIm[num]];
{reDen, imDen} = ComplexExpand[ReIm[den]];
(imNum reDen - reNum imDen)/(reDen^2 + imDen^2)
I think the problem is the denominator which is huge but I am surprised that my approach is not included in ComplexExpand
$endgroup$
$begingroup$
This works for me, thanks. It is interesting though that you call ComplexExpand[ReIm[num]] inside your function. I guess I should always make sure I don't have fractions-inside-fractions before calling this. Also for completion it might be helpful for others to know that the real part is: (reNum reDen + imNum imDen)/(reDen^2 + imDen^2)
$endgroup$
– Steven Sagona
3 hours ago
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "387"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f193509%2fimaginary-part-of-expression-too-difficult-to-calculate%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Not an elegant solution but it works
num = Numerator[expression];
den = Denominator[expression];
{reNum, imNum} = ComplexExpand[ReIm[num]];
{reDen, imDen} = ComplexExpand[ReIm[den]];
(imNum reDen - reNum imDen)/(reDen^2 + imDen^2)
I think the problem is the denominator which is huge but I am surprised that my approach is not included in ComplexExpand
$endgroup$
$begingroup$
This works for me, thanks. It is interesting though that you call ComplexExpand[ReIm[num]] inside your function. I guess I should always make sure I don't have fractions-inside-fractions before calling this. Also for completion it might be helpful for others to know that the real part is: (reNum reDen + imNum imDen)/(reDen^2 + imDen^2)
$endgroup$
– Steven Sagona
3 hours ago
add a comment |
$begingroup$
Not an elegant solution but it works
num = Numerator[expression];
den = Denominator[expression];
{reNum, imNum} = ComplexExpand[ReIm[num]];
{reDen, imDen} = ComplexExpand[ReIm[den]];
(imNum reDen - reNum imDen)/(reDen^2 + imDen^2)
I think the problem is the denominator which is huge but I am surprised that my approach is not included in ComplexExpand
$endgroup$
$begingroup$
This works for me, thanks. It is interesting though that you call ComplexExpand[ReIm[num]] inside your function. I guess I should always make sure I don't have fractions-inside-fractions before calling this. Also for completion it might be helpful for others to know that the real part is: (reNum reDen + imNum imDen)/(reDen^2 + imDen^2)
$endgroup$
– Steven Sagona
3 hours ago
add a comment |
$begingroup$
Not an elegant solution but it works
num = Numerator[expression];
den = Denominator[expression];
{reNum, imNum} = ComplexExpand[ReIm[num]];
{reDen, imDen} = ComplexExpand[ReIm[den]];
(imNum reDen - reNum imDen)/(reDen^2 + imDen^2)
I think the problem is the denominator which is huge but I am surprised that my approach is not included in ComplexExpand
$endgroup$
Not an elegant solution but it works
num = Numerator[expression];
den = Denominator[expression];
{reNum, imNum} = ComplexExpand[ReIm[num]];
{reDen, imDen} = ComplexExpand[ReIm[den]];
(imNum reDen - reNum imDen)/(reDen^2 + imDen^2)
I think the problem is the denominator which is huge but I am surprised that my approach is not included in ComplexExpand
answered 3 hours ago
HughHugh
6,58421945
6,58421945
$begingroup$
This works for me, thanks. It is interesting though that you call ComplexExpand[ReIm[num]] inside your function. I guess I should always make sure I don't have fractions-inside-fractions before calling this. Also for completion it might be helpful for others to know that the real part is: (reNum reDen + imNum imDen)/(reDen^2 + imDen^2)
$endgroup$
– Steven Sagona
3 hours ago
add a comment |
$begingroup$
This works for me, thanks. It is interesting though that you call ComplexExpand[ReIm[num]] inside your function. I guess I should always make sure I don't have fractions-inside-fractions before calling this. Also for completion it might be helpful for others to know that the real part is: (reNum reDen + imNum imDen)/(reDen^2 + imDen^2)
$endgroup$
– Steven Sagona
3 hours ago
$begingroup$
This works for me, thanks. It is interesting though that you call ComplexExpand[ReIm[num]] inside your function. I guess I should always make sure I don't have fractions-inside-fractions before calling this. Also for completion it might be helpful for others to know that the real part is: (reNum reDen + imNum imDen)/(reDen^2 + imDen^2)
$endgroup$
– Steven Sagona
3 hours ago
$begingroup$
This works for me, thanks. It is interesting though that you call ComplexExpand[ReIm[num]] inside your function. I guess I should always make sure I don't have fractions-inside-fractions before calling this. Also for completion it might be helpful for others to know that the real part is: (reNum reDen + imNum imDen)/(reDen^2 + imDen^2)
$endgroup$
– Steven Sagona
3 hours ago
add a comment |
Thanks for contributing an answer to Mathematica Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f193509%2fimaginary-part-of-expression-too-difficult-to-calculate%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown