Why is this code so slow? The 2019 Stack Overflow Developer Survey Results Are InWhy is...

How to type a long/em dash `—`

Output the Arecibo Message

"as much details as you can remember"

What do I do when my TA workload is more than expected?

Is it ok to offer lower paid work as a trial period before negotiating for a full-time job?

Is it ethical to upload a automatically generated paper to a non peer-reviewed site as part of a larger research?

If climate change impact can be observed in nature, has that had any effect on rural, i.e. farming community, perception of the scientific consensus?

Why doesn't UInt have a toDouble()?

For what reasons would an animal species NOT cross a *horizontal* land bridge?

What does もの mean in this sentence?

How do you keep chess fun when your opponent constantly beats you?

Likelihood that a superbug or lethal virus could come from a landfill

How do I free up internal storage if I don't have any apps downloaded?

How come people say “Would of”?

Why is this code so slow?

Did any laptop computers have a built-in 5 1/4 inch floppy drive?

Why does the nucleus not repel itself?

Short story: man watches girlfriend's spaceship entering a 'black hole' (?) forever

Ubuntu Server install with full GUI

ELI5: Why they say that Israel would have been the fourth country to land a spacecraft on the Moon and why they call it low cost?

A word that means fill it to the required quantity

What is this sharp, curved notch on my knife for?

What is the meaning of Triage in Cybersec world?

Can you cast a spell on someone in the Ethereal Plane, if you are on the Material Plane and have the True Seeing spell active?



Why is this code so slow?



The 2019 Stack Overflow Developer Survey Results Are InWhy is FindRoot initial value far from the specified one?Newton-Raphson Method and the Van der Waal Equation Coding questionWhat are the hidden specifications for FindRootHow can I resolve the insufficient memory to complete the computation problem for solving function with iterated variables?Why does this function inside FindRoot fail to evaluate?Very slow mathematica finite differencesManipulate+FindRoot+Plot3D very slow/crashAttacking a “Mathematica can't solve” problemErrors using FindRoot on slow numerical functionAvoiding a for loop to create a list












1












$begingroup$


This code for the first five iterations the speed is okay , but after that the speed is very slow, I cannot understand what is wrong with this? Would you please help me fix it?



  Clear[A, r, x, s, e]
s := 0.3405
e := 1.6539*10^-21
u[0] := 0.
u[1] := 0.1

A[r_] := A[r] =
Piecewise[{{r - 2.5 s - 48*e *s^12*r^-13 + 24*e*s^6*r^-7,
r > 2.5 s}, {-48*e*s^12*r^-13 + 24*e*s^6*r^-7,
s [LessSlantEqual] r [LessSlantEqual] 2.5 s}, {r - s -
24*e*s^-1, r < s}}]
For[i = 2, i < 101,
i++, { u[i_] :=
x /. FindRoot[
u[i - 1] +
1/(i^2 (u[i - 1] - u[i - 2])^2) (u[i - 1] - u[i - 2]) -
0.9 A[x] == x , {x, 1.}]; Print[u[i]]}]









share|improve this question









$endgroup$

















    1












    $begingroup$


    This code for the first five iterations the speed is okay , but after that the speed is very slow, I cannot understand what is wrong with this? Would you please help me fix it?



      Clear[A, r, x, s, e]
    s := 0.3405
    e := 1.6539*10^-21
    u[0] := 0.
    u[1] := 0.1

    A[r_] := A[r] =
    Piecewise[{{r - 2.5 s - 48*e *s^12*r^-13 + 24*e*s^6*r^-7,
    r > 2.5 s}, {-48*e*s^12*r^-13 + 24*e*s^6*r^-7,
    s [LessSlantEqual] r [LessSlantEqual] 2.5 s}, {r - s -
    24*e*s^-1, r < s}}]
    For[i = 2, i < 101,
    i++, { u[i_] :=
    x /. FindRoot[
    u[i - 1] +
    1/(i^2 (u[i - 1] - u[i - 2])^2) (u[i - 1] - u[i - 2]) -
    0.9 A[x] == x , {x, 1.}]; Print[u[i]]}]









    share|improve this question









    $endgroup$















      1












      1








      1





      $begingroup$


      This code for the first five iterations the speed is okay , but after that the speed is very slow, I cannot understand what is wrong with this? Would you please help me fix it?



        Clear[A, r, x, s, e]
      s := 0.3405
      e := 1.6539*10^-21
      u[0] := 0.
      u[1] := 0.1

      A[r_] := A[r] =
      Piecewise[{{r - 2.5 s - 48*e *s^12*r^-13 + 24*e*s^6*r^-7,
      r > 2.5 s}, {-48*e*s^12*r^-13 + 24*e*s^6*r^-7,
      s [LessSlantEqual] r [LessSlantEqual] 2.5 s}, {r - s -
      24*e*s^-1, r < s}}]
      For[i = 2, i < 101,
      i++, { u[i_] :=
      x /. FindRoot[
      u[i - 1] +
      1/(i^2 (u[i - 1] - u[i - 2])^2) (u[i - 1] - u[i - 2]) -
      0.9 A[x] == x , {x, 1.}]; Print[u[i]]}]









      share|improve this question









      $endgroup$




      This code for the first five iterations the speed is okay , but after that the speed is very slow, I cannot understand what is wrong with this? Would you please help me fix it?



        Clear[A, r, x, s, e]
      s := 0.3405
      e := 1.6539*10^-21
      u[0] := 0.
      u[1] := 0.1

      A[r_] := A[r] =
      Piecewise[{{r - 2.5 s - 48*e *s^12*r^-13 + 24*e*s^6*r^-7,
      r > 2.5 s}, {-48*e*s^12*r^-13 + 24*e*s^6*r^-7,
      s [LessSlantEqual] r [LessSlantEqual] 2.5 s}, {r - s -
      24*e*s^-1, r < s}}]
      For[i = 2, i < 101,
      i++, { u[i_] :=
      x /. FindRoot[
      u[i - 1] +
      1/(i^2 (u[i - 1] - u[i - 2])^2) (u[i - 1] - u[i - 2]) -
      0.9 A[x] == x , {x, 1.}]; Print[u[i]]}]






      equation-solving iteration






      share|improve this question













      share|improve this question











      share|improve this question




      share|improve this question










      asked 2 hours ago









      morapimorapi

      153




      153






















          1 Answer
          1






          active

          oldest

          votes


















          3












          $begingroup$

          I recommend you learn the distinction between immediate (=) and delayed (:=) assignments. They make the difference between slow and fast code here. Start with this tutorial or this book chapter, then look at memoization.



          s = 0.3405;
          e = 1.6539*10^-21;
          u[0] = 0.;
          u[1] = 0.1;

          A[r_] = Piecewise[{{r - 2.5 s - 48*e*s^12*r^-13 + 24*e*s^6*r^-7, r > 2.5 s},
          {-48*e*s^12*r^-13 + 24*e*s^6*r^-7, s <= r <= 2.5 s},
          {r - s - 24*e*s^-1, r < s}}];

          u[i_] := u[i] = x /. FindRoot[
          u[i - 1] + 1/(i^2 (u[i - 1] - u[i - 2])^2) (u[i - 1] - u[i - 2]) - 0.9 A[x] == x, {x, 1.}]

          Array[u, 100]



          {0.1, 1.77164, 1.37065, 1.04259, 0.887781, 0.708344, 0.59461,
          0.457228, 0.367364, 0.296071, 0.256104, 0.20463, 0.208487, 1.20917,
          1.04197, 0.939331, 0.879865, 0.827963, 0.774591, 0.72775, 0.67934,
          0.63666, 0.592369, 0.553172, 0.512352, 0.476112, 0.438261, 0.404563,
          0.369277, 0.339073, 0.321616, 0.301118, 0.296195, 0.224688, 0.273538,
          0.31357, 0.33593, 0.366902, 0.38813, 0.417572, 0.437777, 0.465834,
          0.48511, 0.511907, 0.530336, 0.55598, 0.573633, 0.598219, 0.615159,
          0.638772, 0.655054, 0.677768, 0.693441, 0.715321, 0.73043, 0.751535,
          0.766118, 0.786503, 0.800596, 0.820306, 0.833941, 0.852182, 0.85901,
          0.874152, 0.871531, 0.78396, 0.781416, 0.696402, 0.693931, 0.611329,
          0.608927, 0.528603, 0.526267, 0.448099, 0.445825, 0.369701, 0.367485,
          0.315658, 0.325798, 0.341207, 0.351098, 0.366134, 0.375788, 0.390468,
          0.399897, 0.414237, 0.42345, 0.437466, 0.446473, 0.46018, 0.46899,
          0.4824, 0.491022, 0.504149, 0.51259, 0.525444, 0.533712, 0.546306,
          0.554408, 0.56675}




          (takes about 5 seconds)



          Alternatively, use



          Table[u[i], {i, 1, 100}]


          (same result). Your combination of For and Print shows the results but doesn't let you keep using them for more calculations.






          share|improve this answer











          $endgroup$














            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "387"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: false,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: null,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f195054%2fwhy-is-this-code-so-slow%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            3












            $begingroup$

            I recommend you learn the distinction between immediate (=) and delayed (:=) assignments. They make the difference between slow and fast code here. Start with this tutorial or this book chapter, then look at memoization.



            s = 0.3405;
            e = 1.6539*10^-21;
            u[0] = 0.;
            u[1] = 0.1;

            A[r_] = Piecewise[{{r - 2.5 s - 48*e*s^12*r^-13 + 24*e*s^6*r^-7, r > 2.5 s},
            {-48*e*s^12*r^-13 + 24*e*s^6*r^-7, s <= r <= 2.5 s},
            {r - s - 24*e*s^-1, r < s}}];

            u[i_] := u[i] = x /. FindRoot[
            u[i - 1] + 1/(i^2 (u[i - 1] - u[i - 2])^2) (u[i - 1] - u[i - 2]) - 0.9 A[x] == x, {x, 1.}]

            Array[u, 100]



            {0.1, 1.77164, 1.37065, 1.04259, 0.887781, 0.708344, 0.59461,
            0.457228, 0.367364, 0.296071, 0.256104, 0.20463, 0.208487, 1.20917,
            1.04197, 0.939331, 0.879865, 0.827963, 0.774591, 0.72775, 0.67934,
            0.63666, 0.592369, 0.553172, 0.512352, 0.476112, 0.438261, 0.404563,
            0.369277, 0.339073, 0.321616, 0.301118, 0.296195, 0.224688, 0.273538,
            0.31357, 0.33593, 0.366902, 0.38813, 0.417572, 0.437777, 0.465834,
            0.48511, 0.511907, 0.530336, 0.55598, 0.573633, 0.598219, 0.615159,
            0.638772, 0.655054, 0.677768, 0.693441, 0.715321, 0.73043, 0.751535,
            0.766118, 0.786503, 0.800596, 0.820306, 0.833941, 0.852182, 0.85901,
            0.874152, 0.871531, 0.78396, 0.781416, 0.696402, 0.693931, 0.611329,
            0.608927, 0.528603, 0.526267, 0.448099, 0.445825, 0.369701, 0.367485,
            0.315658, 0.325798, 0.341207, 0.351098, 0.366134, 0.375788, 0.390468,
            0.399897, 0.414237, 0.42345, 0.437466, 0.446473, 0.46018, 0.46899,
            0.4824, 0.491022, 0.504149, 0.51259, 0.525444, 0.533712, 0.546306,
            0.554408, 0.56675}




            (takes about 5 seconds)



            Alternatively, use



            Table[u[i], {i, 1, 100}]


            (same result). Your combination of For and Print shows the results but doesn't let you keep using them for more calculations.






            share|improve this answer











            $endgroup$


















              3












              $begingroup$

              I recommend you learn the distinction between immediate (=) and delayed (:=) assignments. They make the difference between slow and fast code here. Start with this tutorial or this book chapter, then look at memoization.



              s = 0.3405;
              e = 1.6539*10^-21;
              u[0] = 0.;
              u[1] = 0.1;

              A[r_] = Piecewise[{{r - 2.5 s - 48*e*s^12*r^-13 + 24*e*s^6*r^-7, r > 2.5 s},
              {-48*e*s^12*r^-13 + 24*e*s^6*r^-7, s <= r <= 2.5 s},
              {r - s - 24*e*s^-1, r < s}}];

              u[i_] := u[i] = x /. FindRoot[
              u[i - 1] + 1/(i^2 (u[i - 1] - u[i - 2])^2) (u[i - 1] - u[i - 2]) - 0.9 A[x] == x, {x, 1.}]

              Array[u, 100]



              {0.1, 1.77164, 1.37065, 1.04259, 0.887781, 0.708344, 0.59461,
              0.457228, 0.367364, 0.296071, 0.256104, 0.20463, 0.208487, 1.20917,
              1.04197, 0.939331, 0.879865, 0.827963, 0.774591, 0.72775, 0.67934,
              0.63666, 0.592369, 0.553172, 0.512352, 0.476112, 0.438261, 0.404563,
              0.369277, 0.339073, 0.321616, 0.301118, 0.296195, 0.224688, 0.273538,
              0.31357, 0.33593, 0.366902, 0.38813, 0.417572, 0.437777, 0.465834,
              0.48511, 0.511907, 0.530336, 0.55598, 0.573633, 0.598219, 0.615159,
              0.638772, 0.655054, 0.677768, 0.693441, 0.715321, 0.73043, 0.751535,
              0.766118, 0.786503, 0.800596, 0.820306, 0.833941, 0.852182, 0.85901,
              0.874152, 0.871531, 0.78396, 0.781416, 0.696402, 0.693931, 0.611329,
              0.608927, 0.528603, 0.526267, 0.448099, 0.445825, 0.369701, 0.367485,
              0.315658, 0.325798, 0.341207, 0.351098, 0.366134, 0.375788, 0.390468,
              0.399897, 0.414237, 0.42345, 0.437466, 0.446473, 0.46018, 0.46899,
              0.4824, 0.491022, 0.504149, 0.51259, 0.525444, 0.533712, 0.546306,
              0.554408, 0.56675}




              (takes about 5 seconds)



              Alternatively, use



              Table[u[i], {i, 1, 100}]


              (same result). Your combination of For and Print shows the results but doesn't let you keep using them for more calculations.






              share|improve this answer











              $endgroup$
















                3












                3








                3





                $begingroup$

                I recommend you learn the distinction between immediate (=) and delayed (:=) assignments. They make the difference between slow and fast code here. Start with this tutorial or this book chapter, then look at memoization.



                s = 0.3405;
                e = 1.6539*10^-21;
                u[0] = 0.;
                u[1] = 0.1;

                A[r_] = Piecewise[{{r - 2.5 s - 48*e*s^12*r^-13 + 24*e*s^6*r^-7, r > 2.5 s},
                {-48*e*s^12*r^-13 + 24*e*s^6*r^-7, s <= r <= 2.5 s},
                {r - s - 24*e*s^-1, r < s}}];

                u[i_] := u[i] = x /. FindRoot[
                u[i - 1] + 1/(i^2 (u[i - 1] - u[i - 2])^2) (u[i - 1] - u[i - 2]) - 0.9 A[x] == x, {x, 1.}]

                Array[u, 100]



                {0.1, 1.77164, 1.37065, 1.04259, 0.887781, 0.708344, 0.59461,
                0.457228, 0.367364, 0.296071, 0.256104, 0.20463, 0.208487, 1.20917,
                1.04197, 0.939331, 0.879865, 0.827963, 0.774591, 0.72775, 0.67934,
                0.63666, 0.592369, 0.553172, 0.512352, 0.476112, 0.438261, 0.404563,
                0.369277, 0.339073, 0.321616, 0.301118, 0.296195, 0.224688, 0.273538,
                0.31357, 0.33593, 0.366902, 0.38813, 0.417572, 0.437777, 0.465834,
                0.48511, 0.511907, 0.530336, 0.55598, 0.573633, 0.598219, 0.615159,
                0.638772, 0.655054, 0.677768, 0.693441, 0.715321, 0.73043, 0.751535,
                0.766118, 0.786503, 0.800596, 0.820306, 0.833941, 0.852182, 0.85901,
                0.874152, 0.871531, 0.78396, 0.781416, 0.696402, 0.693931, 0.611329,
                0.608927, 0.528603, 0.526267, 0.448099, 0.445825, 0.369701, 0.367485,
                0.315658, 0.325798, 0.341207, 0.351098, 0.366134, 0.375788, 0.390468,
                0.399897, 0.414237, 0.42345, 0.437466, 0.446473, 0.46018, 0.46899,
                0.4824, 0.491022, 0.504149, 0.51259, 0.525444, 0.533712, 0.546306,
                0.554408, 0.56675}




                (takes about 5 seconds)



                Alternatively, use



                Table[u[i], {i, 1, 100}]


                (same result). Your combination of For and Print shows the results but doesn't let you keep using them for more calculations.






                share|improve this answer











                $endgroup$



                I recommend you learn the distinction between immediate (=) and delayed (:=) assignments. They make the difference between slow and fast code here. Start with this tutorial or this book chapter, then look at memoization.



                s = 0.3405;
                e = 1.6539*10^-21;
                u[0] = 0.;
                u[1] = 0.1;

                A[r_] = Piecewise[{{r - 2.5 s - 48*e*s^12*r^-13 + 24*e*s^6*r^-7, r > 2.5 s},
                {-48*e*s^12*r^-13 + 24*e*s^6*r^-7, s <= r <= 2.5 s},
                {r - s - 24*e*s^-1, r < s}}];

                u[i_] := u[i] = x /. FindRoot[
                u[i - 1] + 1/(i^2 (u[i - 1] - u[i - 2])^2) (u[i - 1] - u[i - 2]) - 0.9 A[x] == x, {x, 1.}]

                Array[u, 100]



                {0.1, 1.77164, 1.37065, 1.04259, 0.887781, 0.708344, 0.59461,
                0.457228, 0.367364, 0.296071, 0.256104, 0.20463, 0.208487, 1.20917,
                1.04197, 0.939331, 0.879865, 0.827963, 0.774591, 0.72775, 0.67934,
                0.63666, 0.592369, 0.553172, 0.512352, 0.476112, 0.438261, 0.404563,
                0.369277, 0.339073, 0.321616, 0.301118, 0.296195, 0.224688, 0.273538,
                0.31357, 0.33593, 0.366902, 0.38813, 0.417572, 0.437777, 0.465834,
                0.48511, 0.511907, 0.530336, 0.55598, 0.573633, 0.598219, 0.615159,
                0.638772, 0.655054, 0.677768, 0.693441, 0.715321, 0.73043, 0.751535,
                0.766118, 0.786503, 0.800596, 0.820306, 0.833941, 0.852182, 0.85901,
                0.874152, 0.871531, 0.78396, 0.781416, 0.696402, 0.693931, 0.611329,
                0.608927, 0.528603, 0.526267, 0.448099, 0.445825, 0.369701, 0.367485,
                0.315658, 0.325798, 0.341207, 0.351098, 0.366134, 0.375788, 0.390468,
                0.399897, 0.414237, 0.42345, 0.437466, 0.446473, 0.46018, 0.46899,
                0.4824, 0.491022, 0.504149, 0.51259, 0.525444, 0.533712, 0.546306,
                0.554408, 0.56675}




                (takes about 5 seconds)



                Alternatively, use



                Table[u[i], {i, 1, 100}]


                (same result). Your combination of For and Print shows the results but doesn't let you keep using them for more calculations.







                share|improve this answer














                share|improve this answer



                share|improve this answer








                edited 1 hour ago

























                answered 1 hour ago









                RomanRoman

                5,10011130




                5,10011130






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematica Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f195054%2fwhy-is-this-code-so-slow%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    El tren de la libertad Índice Antecedentes "Porque yo decido" Desarrollo de la...

                    Puerta de Hutt Referencias Enlaces externos Menú de navegación15°58′00″S 5°42′00″O /...

                    Castillo d'Acher Características Menú de navegación