Shortcut for value of this indefinite integral?How can this indefinite integral be solved without partial...

How long to clear the 'suck zone' of a turbofan after start is initiated?

Why are there no referendums in the US?

Why didn't Theresa May consult with Parliament before negotiating a deal with the EU?

Sort a list by elements of another list

Is `x >> pure y` equivalent to `liftM (const y) x`

Would this custom Sorcerer variant that can only learn any verbal-component-only spell be unbalanced?

Why not increase contact surface when reentering the atmosphere?

Implement the Thanos sorting algorithm

What does 算不上 mean in 算不上太美好的日子?

How easy is it to start Magic from scratch?

Class Action - which options I have?

Lay out the Carpet

I'm in charge of equipment buying but no one's ever happy with what I choose. How to fix this?

Avoiding estate tax by giving multiple gifts

How to write papers efficiently when English isn't my first language?

Pre-amplifier input protection

How did Arya survive the stabbing?

Increase performance creating Mandelbrot set in python

Anatomically Correct Strange Women In Ponds Distributing Swords

Is a stroke of luck acceptable after a series of unfavorable events?

Did Dumbledore lie to Harry about how long he had James Potter's invisibility cloak when he was examining it? If so, why?

Shortcut for value of this indefinite integral?

Is it appropriate to ask a job candidate if we can record their interview?

Unreliable Magic - Is it worth it?



Shortcut for value of this indefinite integral?


How can this indefinite integral be solved without partial fractions?Question about indefinite integral with square rootIndefinite Integral of $n$-th power of Quadratic DenominatorIndefinite integral of a rational function problem…Need help in indefinite integral eliminationWeird indefinite integral situationHow to find the value of this indefinite integral?Indefinite integral of $arctan(x)$, why consider $1cdot dx$?Indefinite integral with polynomial function factorizingHow do I evaluate this indefinite integral?













3












$begingroup$


If $$f(x) = int e^x biggr(arctan x + frac {2x}{(1+x^2)^2}biggr),dx$$ and $f(0)=0$ then value of $f(1)$ is?



This is actually a Joint Entrance Examination question so I have to do it in two minutes. Is there a shortcut to find this result quickly? It seems very complicated. The answer is $e(pi/4-(1/2)). $










share|cite|improve this question











$endgroup$








  • 2




    $begingroup$
    Actually the answer is $1 + e (pi/4 - 1/2)$. I would hate to have to do this in two minutes.
    $endgroup$
    – Robert Israel
    3 hours ago










  • $begingroup$
    @RobertIsrael. I was typing almost the same ! Cheers
    $endgroup$
    – Claude Leibovici
    3 hours ago










  • $begingroup$
    @RobertIsrael there must be a printing error in my book then.
    $endgroup$
    – Hema
    3 hours ago










  • $begingroup$
    What is JEE...?
    $endgroup$
    – amsmath
    3 hours ago










  • $begingroup$
    @amsmath Joint Entrance Exam in India. en.wikipedia.org/wiki/Joint_Entrance_Examination
    $endgroup$
    – Deepak
    2 hours ago
















3












$begingroup$


If $$f(x) = int e^x biggr(arctan x + frac {2x}{(1+x^2)^2}biggr),dx$$ and $f(0)=0$ then value of $f(1)$ is?



This is actually a Joint Entrance Examination question so I have to do it in two minutes. Is there a shortcut to find this result quickly? It seems very complicated. The answer is $e(pi/4-(1/2)). $










share|cite|improve this question











$endgroup$








  • 2




    $begingroup$
    Actually the answer is $1 + e (pi/4 - 1/2)$. I would hate to have to do this in two minutes.
    $endgroup$
    – Robert Israel
    3 hours ago










  • $begingroup$
    @RobertIsrael. I was typing almost the same ! Cheers
    $endgroup$
    – Claude Leibovici
    3 hours ago










  • $begingroup$
    @RobertIsrael there must be a printing error in my book then.
    $endgroup$
    – Hema
    3 hours ago










  • $begingroup$
    What is JEE...?
    $endgroup$
    – amsmath
    3 hours ago










  • $begingroup$
    @amsmath Joint Entrance Exam in India. en.wikipedia.org/wiki/Joint_Entrance_Examination
    $endgroup$
    – Deepak
    2 hours ago














3












3








3


1



$begingroup$


If $$f(x) = int e^x biggr(arctan x + frac {2x}{(1+x^2)^2}biggr),dx$$ and $f(0)=0$ then value of $f(1)$ is?



This is actually a Joint Entrance Examination question so I have to do it in two minutes. Is there a shortcut to find this result quickly? It seems very complicated. The answer is $e(pi/4-(1/2)). $










share|cite|improve this question











$endgroup$




If $$f(x) = int e^x biggr(arctan x + frac {2x}{(1+x^2)^2}biggr),dx$$ and $f(0)=0$ then value of $f(1)$ is?



This is actually a Joint Entrance Examination question so I have to do it in two minutes. Is there a shortcut to find this result quickly? It seems very complicated. The answer is $e(pi/4-(1/2)). $







calculus integration indefinite-integrals






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 55 mins ago







Hema

















asked 3 hours ago









HemaHema

6531213




6531213








  • 2




    $begingroup$
    Actually the answer is $1 + e (pi/4 - 1/2)$. I would hate to have to do this in two minutes.
    $endgroup$
    – Robert Israel
    3 hours ago










  • $begingroup$
    @RobertIsrael. I was typing almost the same ! Cheers
    $endgroup$
    – Claude Leibovici
    3 hours ago










  • $begingroup$
    @RobertIsrael there must be a printing error in my book then.
    $endgroup$
    – Hema
    3 hours ago










  • $begingroup$
    What is JEE...?
    $endgroup$
    – amsmath
    3 hours ago










  • $begingroup$
    @amsmath Joint Entrance Exam in India. en.wikipedia.org/wiki/Joint_Entrance_Examination
    $endgroup$
    – Deepak
    2 hours ago














  • 2




    $begingroup$
    Actually the answer is $1 + e (pi/4 - 1/2)$. I would hate to have to do this in two minutes.
    $endgroup$
    – Robert Israel
    3 hours ago










  • $begingroup$
    @RobertIsrael. I was typing almost the same ! Cheers
    $endgroup$
    – Claude Leibovici
    3 hours ago










  • $begingroup$
    @RobertIsrael there must be a printing error in my book then.
    $endgroup$
    – Hema
    3 hours ago










  • $begingroup$
    What is JEE...?
    $endgroup$
    – amsmath
    3 hours ago










  • $begingroup$
    @amsmath Joint Entrance Exam in India. en.wikipedia.org/wiki/Joint_Entrance_Examination
    $endgroup$
    – Deepak
    2 hours ago








2




2




$begingroup$
Actually the answer is $1 + e (pi/4 - 1/2)$. I would hate to have to do this in two minutes.
$endgroup$
– Robert Israel
3 hours ago




$begingroup$
Actually the answer is $1 + e (pi/4 - 1/2)$. I would hate to have to do this in two minutes.
$endgroup$
– Robert Israel
3 hours ago












$begingroup$
@RobertIsrael. I was typing almost the same ! Cheers
$endgroup$
– Claude Leibovici
3 hours ago




$begingroup$
@RobertIsrael. I was typing almost the same ! Cheers
$endgroup$
– Claude Leibovici
3 hours ago












$begingroup$
@RobertIsrael there must be a printing error in my book then.
$endgroup$
– Hema
3 hours ago




$begingroup$
@RobertIsrael there must be a printing error in my book then.
$endgroup$
– Hema
3 hours ago












$begingroup$
What is JEE...?
$endgroup$
– amsmath
3 hours ago




$begingroup$
What is JEE...?
$endgroup$
– amsmath
3 hours ago












$begingroup$
@amsmath Joint Entrance Exam in India. en.wikipedia.org/wiki/Joint_Entrance_Examination
$endgroup$
– Deepak
2 hours ago




$begingroup$
@amsmath Joint Entrance Exam in India. en.wikipedia.org/wiki/Joint_Entrance_Examination
$endgroup$
– Deepak
2 hours ago










2 Answers
2






active

oldest

votes


















4












$begingroup$

With $g(t) = arctan(t) = tan^{-1}(t)$, the function is $$f(x) = int_0^x e^t (g(t) - g''(t)) , dt = int_0^x [e^t g(t)]' - [e^t g'(t)]', dt = $$ $$ = int_0^x [e^t(g(t) - g'(t)]' , dt =
e^x(g(x) - g'(x)) - (g(0) - g'(0))$$



As noted in comments, $f(1)$ is actually $frac{epi}{4} - frac{e}{2} +1$.






share|cite|improve this answer









$endgroup$





















    3












    $begingroup$

    Actually there is a formula $$int e^x (g (x)+g'(x)),dx = e^xcdot g (x)+c.$$



    Now for $$int e^x biggr(arctan x + frac {2x}{(1+x^2)^2}biggr),dx $$, do the following manipulation:
    $$int e^x biggr(arctan x + frac {2x}{(1+x^2)^2}biggr),dx =int e^x biggr(arctan x - frac {1}{1+x^2}+frac {1}{1+x^2}+frac {2x}{(1+x^2)^2}biggr),dx. $$



    Note that $$biggr(arctan x - frac {1}{1+x^2}biggr)'=frac {1}{1+x^2}+frac {2x}{(1+x^2)^2}. $$



    Then by the above formula $$int e^x biggr(arctan x + frac {2x}{(1+x^2)^2}biggr),dx=e^x biggr(arctan x - frac {1}{1+x^2}biggr)+c.$$
    So $$f (1)=biggr[e^x biggr(arctan x - frac {1}{1+x^2}biggr)biggr]_0^1=frac {epi}{4}-frac {e}{2}+1. $$






    share|cite|improve this answer









    $endgroup$













      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3165393%2fshortcut-for-value-of-this-indefinite-integral%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      4












      $begingroup$

      With $g(t) = arctan(t) = tan^{-1}(t)$, the function is $$f(x) = int_0^x e^t (g(t) - g''(t)) , dt = int_0^x [e^t g(t)]' - [e^t g'(t)]', dt = $$ $$ = int_0^x [e^t(g(t) - g'(t)]' , dt =
      e^x(g(x) - g'(x)) - (g(0) - g'(0))$$



      As noted in comments, $f(1)$ is actually $frac{epi}{4} - frac{e}{2} +1$.






      share|cite|improve this answer









      $endgroup$


















        4












        $begingroup$

        With $g(t) = arctan(t) = tan^{-1}(t)$, the function is $$f(x) = int_0^x e^t (g(t) - g''(t)) , dt = int_0^x [e^t g(t)]' - [e^t g'(t)]', dt = $$ $$ = int_0^x [e^t(g(t) - g'(t)]' , dt =
        e^x(g(x) - g'(x)) - (g(0) - g'(0))$$



        As noted in comments, $f(1)$ is actually $frac{epi}{4} - frac{e}{2} +1$.






        share|cite|improve this answer









        $endgroup$
















          4












          4








          4





          $begingroup$

          With $g(t) = arctan(t) = tan^{-1}(t)$, the function is $$f(x) = int_0^x e^t (g(t) - g''(t)) , dt = int_0^x [e^t g(t)]' - [e^t g'(t)]', dt = $$ $$ = int_0^x [e^t(g(t) - g'(t)]' , dt =
          e^x(g(x) - g'(x)) - (g(0) - g'(0))$$



          As noted in comments, $f(1)$ is actually $frac{epi}{4} - frac{e}{2} +1$.






          share|cite|improve this answer









          $endgroup$



          With $g(t) = arctan(t) = tan^{-1}(t)$, the function is $$f(x) = int_0^x e^t (g(t) - g''(t)) , dt = int_0^x [e^t g(t)]' - [e^t g'(t)]', dt = $$ $$ = int_0^x [e^t(g(t) - g'(t)]' , dt =
          e^x(g(x) - g'(x)) - (g(0) - g'(0))$$



          As noted in comments, $f(1)$ is actually $frac{epi}{4} - frac{e}{2} +1$.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered 3 hours ago









          Catalin ZaraCatalin Zara

          3,807514




          3,807514























              3












              $begingroup$

              Actually there is a formula $$int e^x (g (x)+g'(x)),dx = e^xcdot g (x)+c.$$



              Now for $$int e^x biggr(arctan x + frac {2x}{(1+x^2)^2}biggr),dx $$, do the following manipulation:
              $$int e^x biggr(arctan x + frac {2x}{(1+x^2)^2}biggr),dx =int e^x biggr(arctan x - frac {1}{1+x^2}+frac {1}{1+x^2}+frac {2x}{(1+x^2)^2}biggr),dx. $$



              Note that $$biggr(arctan x - frac {1}{1+x^2}biggr)'=frac {1}{1+x^2}+frac {2x}{(1+x^2)^2}. $$



              Then by the above formula $$int e^x biggr(arctan x + frac {2x}{(1+x^2)^2}biggr),dx=e^x biggr(arctan x - frac {1}{1+x^2}biggr)+c.$$
              So $$f (1)=biggr[e^x biggr(arctan x - frac {1}{1+x^2}biggr)biggr]_0^1=frac {epi}{4}-frac {e}{2}+1. $$






              share|cite|improve this answer









              $endgroup$


















                3












                $begingroup$

                Actually there is a formula $$int e^x (g (x)+g'(x)),dx = e^xcdot g (x)+c.$$



                Now for $$int e^x biggr(arctan x + frac {2x}{(1+x^2)^2}biggr),dx $$, do the following manipulation:
                $$int e^x biggr(arctan x + frac {2x}{(1+x^2)^2}biggr),dx =int e^x biggr(arctan x - frac {1}{1+x^2}+frac {1}{1+x^2}+frac {2x}{(1+x^2)^2}biggr),dx. $$



                Note that $$biggr(arctan x - frac {1}{1+x^2}biggr)'=frac {1}{1+x^2}+frac {2x}{(1+x^2)^2}. $$



                Then by the above formula $$int e^x biggr(arctan x + frac {2x}{(1+x^2)^2}biggr),dx=e^x biggr(arctan x - frac {1}{1+x^2}biggr)+c.$$
                So $$f (1)=biggr[e^x biggr(arctan x - frac {1}{1+x^2}biggr)biggr]_0^1=frac {epi}{4}-frac {e}{2}+1. $$






                share|cite|improve this answer









                $endgroup$
















                  3












                  3








                  3





                  $begingroup$

                  Actually there is a formula $$int e^x (g (x)+g'(x)),dx = e^xcdot g (x)+c.$$



                  Now for $$int e^x biggr(arctan x + frac {2x}{(1+x^2)^2}biggr),dx $$, do the following manipulation:
                  $$int e^x biggr(arctan x + frac {2x}{(1+x^2)^2}biggr),dx =int e^x biggr(arctan x - frac {1}{1+x^2}+frac {1}{1+x^2}+frac {2x}{(1+x^2)^2}biggr),dx. $$



                  Note that $$biggr(arctan x - frac {1}{1+x^2}biggr)'=frac {1}{1+x^2}+frac {2x}{(1+x^2)^2}. $$



                  Then by the above formula $$int e^x biggr(arctan x + frac {2x}{(1+x^2)^2}biggr),dx=e^x biggr(arctan x - frac {1}{1+x^2}biggr)+c.$$
                  So $$f (1)=biggr[e^x biggr(arctan x - frac {1}{1+x^2}biggr)biggr]_0^1=frac {epi}{4}-frac {e}{2}+1. $$






                  share|cite|improve this answer









                  $endgroup$



                  Actually there is a formula $$int e^x (g (x)+g'(x)),dx = e^xcdot g (x)+c.$$



                  Now for $$int e^x biggr(arctan x + frac {2x}{(1+x^2)^2}biggr),dx $$, do the following manipulation:
                  $$int e^x biggr(arctan x + frac {2x}{(1+x^2)^2}biggr),dx =int e^x biggr(arctan x - frac {1}{1+x^2}+frac {1}{1+x^2}+frac {2x}{(1+x^2)^2}biggr),dx. $$



                  Note that $$biggr(arctan x - frac {1}{1+x^2}biggr)'=frac {1}{1+x^2}+frac {2x}{(1+x^2)^2}. $$



                  Then by the above formula $$int e^x biggr(arctan x + frac {2x}{(1+x^2)^2}biggr),dx=e^x biggr(arctan x - frac {1}{1+x^2}biggr)+c.$$
                  So $$f (1)=biggr[e^x biggr(arctan x - frac {1}{1+x^2}biggr)biggr]_0^1=frac {epi}{4}-frac {e}{2}+1. $$







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered 2 hours ago









                  Thomas ShelbyThomas Shelby

                  4,4892726




                  4,4892726






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3165393%2fshortcut-for-value-of-this-indefinite-integral%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      El tren de la libertad Índice Antecedentes "Porque yo decido" Desarrollo de la...

                      Puerta de Hutt Referencias Enlaces externos Menú de navegación15°58′00″S 5°42′00″O /...

                      Castillo d'Acher Características Menú de navegación