calculator's angle answer for trig ratios that can work in more than 1 quadrant on the unit circle ...

Diophantine equation 3^a+1=3^b+5^c

Russian equivalents of おしゃれは足元から (Every good outfit starts with the shoes)

When does a function NOT have an antiderivative?

Is this Kuo-toa homebrew race balanced?

Did any compiler fully use 80-bit floating point?

Sally's older brother

Short story about astronauts fertilizing soil with their own bodies

Why not use the yoke to control yaw, as well as pitch and roll?

calculator's angle answer for trig ratios that can work in more than 1 quadrant on the unit circle

Noise in Eigenvalues plot

Flight departed from the gate 5 min before scheduled departure time. Refund options

Why are current probes so expensive?

Why does BitLocker not use RSA?

Should man-made satellites feature an intelligent inverted "cow catcher"?

Are there any irrational/transcendental numbers for which the distribution of decimal digits is not uniform?

Any stored/leased 737s that could substitute for grounded MAXs?

Why do C and C++ allow the expression (int) + 4*5;

Plotting a Maclaurin series

Found this skink in my tomato plant bucket. Is he trapped? Or could he leave if he wanted?

How do I say "this must not happen"?

Centre cell vertically in tabularx

New Order #6: Easter Egg

First paper to introduce the "principal-agent problem"

One-one communication



calculator's angle answer for trig ratios that can work in more than 1 quadrant on the unit circle



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)Understanding inverse trig relationsFinding a point on the unit circle; more specifically, what quadrant it is inBroken Calculator: only certain unary functions work.How does the unit circle work for trigonometric ratios of non-acute angles?unit circle trigonometry where angle is greater than 90 degrees.Why are the Trig functions defined by the counterclockwise path of a circle?Trigonometric Ratios for angles greater than 90 degrees and the Unit CircleIf $sin{x}=t, quad xin(frac{3pi}{2},2pi),$ what is $tan{x}?$Trigonometric Ratios for angles greater than 90 degrees in unit circleHow does the unit circle work for trigonometric ratios of obtuse angles?Why we need an angle to for trig ratios?












5












$begingroup$



  1. Why does the calculator do a cc (counterclockwise) rotation for positive trig ratios instead of clockwise,


  2. and a clockwise rotation for negative sine & tan instead of cc


  3. and a counterclockwise rotation for negative cos ratios instead of a clockwise



ie. in degree mode



$cos^{-1}(-5/12)=114.62$



$sin^{-1}(-5/12)=-24.62$



$tan^{-1}(-5/12)=-22.61$



Is it maybe picking the value that involves the least amount of computing power? or is it a matter of convention? or am I overlooking something?










share|cite|improve this question









New contributor




Allan Henriques is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$








  • 1




    $begingroup$
    Conventionally, counter clockwise rotations are described by positive angles. But it looks like your question is more about the ranges of the inverse trigonometric functions.
    $endgroup$
    – John Doe
    2 hours ago








  • 2




    $begingroup$
    Try using Mathjax: Surround your formulas with $ signs, use before a trig function, and {} between the start and end of a superscript. E.g. $cos^{-1}(-5/12)=114.62$
    $endgroup$
    – man on laptop
    2 hours ago












  • $begingroup$
    This tutorial explains how to typeset mathematics on this site.
    $endgroup$
    – N. F. Taussig
    1 hour ago
















5












$begingroup$



  1. Why does the calculator do a cc (counterclockwise) rotation for positive trig ratios instead of clockwise,


  2. and a clockwise rotation for negative sine & tan instead of cc


  3. and a counterclockwise rotation for negative cos ratios instead of a clockwise



ie. in degree mode



$cos^{-1}(-5/12)=114.62$



$sin^{-1}(-5/12)=-24.62$



$tan^{-1}(-5/12)=-22.61$



Is it maybe picking the value that involves the least amount of computing power? or is it a matter of convention? or am I overlooking something?










share|cite|improve this question









New contributor




Allan Henriques is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$








  • 1




    $begingroup$
    Conventionally, counter clockwise rotations are described by positive angles. But it looks like your question is more about the ranges of the inverse trigonometric functions.
    $endgroup$
    – John Doe
    2 hours ago








  • 2




    $begingroup$
    Try using Mathjax: Surround your formulas with $ signs, use before a trig function, and {} between the start and end of a superscript. E.g. $cos^{-1}(-5/12)=114.62$
    $endgroup$
    – man on laptop
    2 hours ago












  • $begingroup$
    This tutorial explains how to typeset mathematics on this site.
    $endgroup$
    – N. F. Taussig
    1 hour ago














5












5








5





$begingroup$



  1. Why does the calculator do a cc (counterclockwise) rotation for positive trig ratios instead of clockwise,


  2. and a clockwise rotation for negative sine & tan instead of cc


  3. and a counterclockwise rotation for negative cos ratios instead of a clockwise



ie. in degree mode



$cos^{-1}(-5/12)=114.62$



$sin^{-1}(-5/12)=-24.62$



$tan^{-1}(-5/12)=-22.61$



Is it maybe picking the value that involves the least amount of computing power? or is it a matter of convention? or am I overlooking something?










share|cite|improve this question









New contributor




Allan Henriques is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$





  1. Why does the calculator do a cc (counterclockwise) rotation for positive trig ratios instead of clockwise,


  2. and a clockwise rotation for negative sine & tan instead of cc


  3. and a counterclockwise rotation for negative cos ratios instead of a clockwise



ie. in degree mode



$cos^{-1}(-5/12)=114.62$



$sin^{-1}(-5/12)=-24.62$



$tan^{-1}(-5/12)=-22.61$



Is it maybe picking the value that involves the least amount of computing power? or is it a matter of convention? or am I overlooking something?







trigonometry






share|cite|improve this question









New contributor




Allan Henriques is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|cite|improve this question









New contributor




Allan Henriques is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|cite|improve this question




share|cite|improve this question








edited 1 hour ago









N. F. Taussig

45.5k103358




45.5k103358






New contributor




Allan Henriques is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked 2 hours ago









Allan HenriquesAllan Henriques

283




283




New contributor




Allan Henriques is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





Allan Henriques is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






Allan Henriques is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.








  • 1




    $begingroup$
    Conventionally, counter clockwise rotations are described by positive angles. But it looks like your question is more about the ranges of the inverse trigonometric functions.
    $endgroup$
    – John Doe
    2 hours ago








  • 2




    $begingroup$
    Try using Mathjax: Surround your formulas with $ signs, use before a trig function, and {} between the start and end of a superscript. E.g. $cos^{-1}(-5/12)=114.62$
    $endgroup$
    – man on laptop
    2 hours ago












  • $begingroup$
    This tutorial explains how to typeset mathematics on this site.
    $endgroup$
    – N. F. Taussig
    1 hour ago














  • 1




    $begingroup$
    Conventionally, counter clockwise rotations are described by positive angles. But it looks like your question is more about the ranges of the inverse trigonometric functions.
    $endgroup$
    – John Doe
    2 hours ago








  • 2




    $begingroup$
    Try using Mathjax: Surround your formulas with $ signs, use before a trig function, and {} between the start and end of a superscript. E.g. $cos^{-1}(-5/12)=114.62$
    $endgroup$
    – man on laptop
    2 hours ago












  • $begingroup$
    This tutorial explains how to typeset mathematics on this site.
    $endgroup$
    – N. F. Taussig
    1 hour ago








1




1




$begingroup$
Conventionally, counter clockwise rotations are described by positive angles. But it looks like your question is more about the ranges of the inverse trigonometric functions.
$endgroup$
– John Doe
2 hours ago






$begingroup$
Conventionally, counter clockwise rotations are described by positive angles. But it looks like your question is more about the ranges of the inverse trigonometric functions.
$endgroup$
– John Doe
2 hours ago






2




2




$begingroup$
Try using Mathjax: Surround your formulas with $ signs, use before a trig function, and {} between the start and end of a superscript. E.g. $cos^{-1}(-5/12)=114.62$
$endgroup$
– man on laptop
2 hours ago






$begingroup$
Try using Mathjax: Surround your formulas with $ signs, use before a trig function, and {} between the start and end of a superscript. E.g. $cos^{-1}(-5/12)=114.62$
$endgroup$
– man on laptop
2 hours ago














$begingroup$
This tutorial explains how to typeset mathematics on this site.
$endgroup$
– N. F. Taussig
1 hour ago




$begingroup$
This tutorial explains how to typeset mathematics on this site.
$endgroup$
– N. F. Taussig
1 hour ago










1 Answer
1






active

oldest

votes


















3












$begingroup$

This actually has to do with the way inverse trig functions are defined. For a function to be invertible there must be one input for every output. Graphically, this is equivalent to passing the horizontal line test. Now, trig functions are periodic and as such are very much not invertible. The way we get around this is to restrict the domain of each function to a region that passes the horizontal line test.



For $sin(x)$ the region that we take is $-frac{pi}{2}leq x leq frac{pi}{2}$, or $-90^{circ} leq x leq 90^{circ}$ in degree mode, as seen in the following plot:



enter image description here



For $cos(x)$ the region we take is $0leq x leq pi$, or $0^{circ} leq x leq 180^{circ}$ in degree mode. Note that we could also have taken $-pi leq x leq 0$, but for convenience we take $x$ to be a positive angle.



enter image description here



Lastly, for $tan(x)$ we can take a full period around the origin, so $-frac{pi}{2} leq x leq frac{pi}{2}$, or $-90^{circ} leq x leq 90^{circ}$ in degree mode.



enter image description here






share|cite|improve this answer









$endgroup$









  • 2




    $begingroup$
    That makes complete sense! When you see the graph of the functions, sure enough they give out the reasons why the calculators give out the answers they do.
    $endgroup$
    – bjcolby15
    2 hours ago












Your Answer








StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});






Allan Henriques is a new contributor. Be nice, and check out our Code of Conduct.










draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3196538%2fcalculators-angle-answer-for-trig-ratios-that-can-work-in-more-than-1-quadrant%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









3












$begingroup$

This actually has to do with the way inverse trig functions are defined. For a function to be invertible there must be one input for every output. Graphically, this is equivalent to passing the horizontal line test. Now, trig functions are periodic and as such are very much not invertible. The way we get around this is to restrict the domain of each function to a region that passes the horizontal line test.



For $sin(x)$ the region that we take is $-frac{pi}{2}leq x leq frac{pi}{2}$, or $-90^{circ} leq x leq 90^{circ}$ in degree mode, as seen in the following plot:



enter image description here



For $cos(x)$ the region we take is $0leq x leq pi$, or $0^{circ} leq x leq 180^{circ}$ in degree mode. Note that we could also have taken $-pi leq x leq 0$, but for convenience we take $x$ to be a positive angle.



enter image description here



Lastly, for $tan(x)$ we can take a full period around the origin, so $-frac{pi}{2} leq x leq frac{pi}{2}$, or $-90^{circ} leq x leq 90^{circ}$ in degree mode.



enter image description here






share|cite|improve this answer









$endgroup$









  • 2




    $begingroup$
    That makes complete sense! When you see the graph of the functions, sure enough they give out the reasons why the calculators give out the answers they do.
    $endgroup$
    – bjcolby15
    2 hours ago
















3












$begingroup$

This actually has to do with the way inverse trig functions are defined. For a function to be invertible there must be one input for every output. Graphically, this is equivalent to passing the horizontal line test. Now, trig functions are periodic and as such are very much not invertible. The way we get around this is to restrict the domain of each function to a region that passes the horizontal line test.



For $sin(x)$ the region that we take is $-frac{pi}{2}leq x leq frac{pi}{2}$, or $-90^{circ} leq x leq 90^{circ}$ in degree mode, as seen in the following plot:



enter image description here



For $cos(x)$ the region we take is $0leq x leq pi$, or $0^{circ} leq x leq 180^{circ}$ in degree mode. Note that we could also have taken $-pi leq x leq 0$, but for convenience we take $x$ to be a positive angle.



enter image description here



Lastly, for $tan(x)$ we can take a full period around the origin, so $-frac{pi}{2} leq x leq frac{pi}{2}$, or $-90^{circ} leq x leq 90^{circ}$ in degree mode.



enter image description here






share|cite|improve this answer









$endgroup$









  • 2




    $begingroup$
    That makes complete sense! When you see the graph of the functions, sure enough they give out the reasons why the calculators give out the answers they do.
    $endgroup$
    – bjcolby15
    2 hours ago














3












3








3





$begingroup$

This actually has to do with the way inverse trig functions are defined. For a function to be invertible there must be one input for every output. Graphically, this is equivalent to passing the horizontal line test. Now, trig functions are periodic and as such are very much not invertible. The way we get around this is to restrict the domain of each function to a region that passes the horizontal line test.



For $sin(x)$ the region that we take is $-frac{pi}{2}leq x leq frac{pi}{2}$, or $-90^{circ} leq x leq 90^{circ}$ in degree mode, as seen in the following plot:



enter image description here



For $cos(x)$ the region we take is $0leq x leq pi$, or $0^{circ} leq x leq 180^{circ}$ in degree mode. Note that we could also have taken $-pi leq x leq 0$, but for convenience we take $x$ to be a positive angle.



enter image description here



Lastly, for $tan(x)$ we can take a full period around the origin, so $-frac{pi}{2} leq x leq frac{pi}{2}$, or $-90^{circ} leq x leq 90^{circ}$ in degree mode.



enter image description here






share|cite|improve this answer









$endgroup$



This actually has to do with the way inverse trig functions are defined. For a function to be invertible there must be one input for every output. Graphically, this is equivalent to passing the horizontal line test. Now, trig functions are periodic and as such are very much not invertible. The way we get around this is to restrict the domain of each function to a region that passes the horizontal line test.



For $sin(x)$ the region that we take is $-frac{pi}{2}leq x leq frac{pi}{2}$, or $-90^{circ} leq x leq 90^{circ}$ in degree mode, as seen in the following plot:



enter image description here



For $cos(x)$ the region we take is $0leq x leq pi$, or $0^{circ} leq x leq 180^{circ}$ in degree mode. Note that we could also have taken $-pi leq x leq 0$, but for convenience we take $x$ to be a positive angle.



enter image description here



Lastly, for $tan(x)$ we can take a full period around the origin, so $-frac{pi}{2} leq x leq frac{pi}{2}$, or $-90^{circ} leq x leq 90^{circ}$ in degree mode.



enter image description here







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered 2 hours ago









DMcMorDMcMor

2,96821328




2,96821328








  • 2




    $begingroup$
    That makes complete sense! When you see the graph of the functions, sure enough they give out the reasons why the calculators give out the answers they do.
    $endgroup$
    – bjcolby15
    2 hours ago














  • 2




    $begingroup$
    That makes complete sense! When you see the graph of the functions, sure enough they give out the reasons why the calculators give out the answers they do.
    $endgroup$
    – bjcolby15
    2 hours ago








2




2




$begingroup$
That makes complete sense! When you see the graph of the functions, sure enough they give out the reasons why the calculators give out the answers they do.
$endgroup$
– bjcolby15
2 hours ago




$begingroup$
That makes complete sense! When you see the graph of the functions, sure enough they give out the reasons why the calculators give out the answers they do.
$endgroup$
– bjcolby15
2 hours ago










Allan Henriques is a new contributor. Be nice, and check out our Code of Conduct.










draft saved

draft discarded


















Allan Henriques is a new contributor. Be nice, and check out our Code of Conduct.













Allan Henriques is a new contributor. Be nice, and check out our Code of Conduct.












Allan Henriques is a new contributor. Be nice, and check out our Code of Conduct.
















Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3196538%2fcalculators-angle-answer-for-trig-ratios-that-can-work-in-more-than-1-quadrant%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

El tren de la libertad Índice Antecedentes "Porque yo decido" Desarrollo de la...

Castillo d'Acher Características Menú de navegación

Connecting two nodes from the same mother node horizontallyTikZ: What EXACTLY does the the |- notation for...