Construct a nonabelian group of order 44 Announcing the arrival of Valued Associate #679:...

Recursive calls to a function - why is the address of the parameter passed to it lowering with each call?

Who's this lady in the war room?

Coin Game with infinite paradox

Why did Bronn offer to be Tyrion Lannister's champion in trial by combat?

Meaning of this sentence, confused by まで

Proving inequality for positive definite matrix

Compiling and throwing simple dynamic exceptions at runtime for JVM

Why these surprising proportionalities of integrals involving odd zeta values?

Why isn't everyone flabbergasted about Bran's "gift"?

What is the evidence that custom checks in Northern Ireland are going to result in violence?

What helicopter has the most rotor blades?

Construct a nonabelian group of order 44

Short story about an alien named Ushtu(?) coming from a future Earth, when ours was destroyed by a nuclear explosion

Help Recreating a Table

Can this water damage be explained by lack of gutters and grading issues?

Determine the generator of an ideal of ring of integers

A journey... into the MIND

What is the definining line between a helicopter and a drone a person can ride in?

What is the ongoing value of the Kanban board to the developers as opposed to management

Can I take recommendation from someone I met at a conference?

Does the universe have a fixed centre of mass?

How to mute a string and play another at the same time

How is an IPA symbol that lacks a name (e.g. ɲ) called?

Why do C and C++ allow the expression (int) + 4*5?



Construct a nonabelian group of order 44



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)The dihedral group $Vlanglealpharangle$Number of Sylow bases of a certain group of order 60Nonabelian group of order $p^3$ for odd prime $p$ and exponent $p$The only group of order $255$ is $mathbb Z_{255}$ ( Using Sylow and the $N/C$ Theorem)Number of elements of order $11$ in group of order $1331$Classifying groups of order $20$Construct a non-abelian group of order 75order of automorphism group of an abelian group of order 75Understanding a group of order $2^{25}.97^2$Understanding semidirect product for group of order 30












6












$begingroup$


Let $G$ be a group s.t. $|G|=44=2^211$. Using Sylow's Theorems, I have deduced that there is a unique Sylow $11$-subgroup of $G$; we shall call it $R$. Let $P$ be a Sylow $2$-subgroup of $G$. Then we have $G=Prtimes R$ and a homomorphism



$$gamma: P rightarrow Aut(R)=Aut(mathbb{Z_{11}})cong(mathbb{Z_{10}},+) .$$



Is this all correct so far?



So what about $gamma(p)=phi_p$ where $phi_p(r)=r^5$. I thought this because $tilde{5}inmathbb{Z_{10}}$ has order $4$ so the order of any element of $P$ could divide it... or something...



So I was thinking the group would be something like



$$G= langle p,r | p^4=r^{11} prp^{-1}=r^5 rangle .$$



Any insight is greatly appreciated! Thanks! I would like to know both where I went wrong and how to do it correctly.





Did I do the above right? Identifying $mathbb{Z_{11}}$ with the additive group of $mathbb{Z_{10}}$? Or should I look at it multiplicatively, because I don't understand how that isomorphism works so it doesn't make sense to define the conjugation that makes the semi-direct product well defined based on elements of the additive group $mathbb{Z_{10}}$, but instead realize that $10 in U(mathbb{Z_{11}})$ has order $2$ so we can have a group presentation something like:



$G = langle p, r | p^2=r^{11}=1 , prp^{-1}=r^{10} rangle$



Insight appreciated!



I understand the dihedral group of the $22$-gon works now, thank you. Can somebody help me with my approach in constructing a non-abelian group of order $44$ via the methods I've been using? Thanks!










share|cite|improve this question











$endgroup$












  • $begingroup$
    I think you meant $r^{11}$ (r^{11}), not $r^11$ (r^11)
    $endgroup$
    – J. W. Tanner
    4 hours ago










  • $begingroup$
    I've taken the liberty of apply the correction J.W. Tanner mentioned, as well as a few other minor fixes.
    $endgroup$
    – Travis
    2 hours ago










  • $begingroup$
    I don’t understand the words, “because $tilde5inBbb Z_{10}$ has order $4$”
    $endgroup$
    – Lubin
    2 hours ago










  • $begingroup$
    Doesn't $tilde{5} in mathbb{Z}_{10}$ have order $2$?
    $endgroup$
    – Peter Shor
    2 hours ago










  • $begingroup$
    And if you have a non-abelian group of order 22, isn't it easy to find one of order 44?
    $endgroup$
    – Peter Shor
    2 hours ago
















6












$begingroup$


Let $G$ be a group s.t. $|G|=44=2^211$. Using Sylow's Theorems, I have deduced that there is a unique Sylow $11$-subgroup of $G$; we shall call it $R$. Let $P$ be a Sylow $2$-subgroup of $G$. Then we have $G=Prtimes R$ and a homomorphism



$$gamma: P rightarrow Aut(R)=Aut(mathbb{Z_{11}})cong(mathbb{Z_{10}},+) .$$



Is this all correct so far?



So what about $gamma(p)=phi_p$ where $phi_p(r)=r^5$. I thought this because $tilde{5}inmathbb{Z_{10}}$ has order $4$ so the order of any element of $P$ could divide it... or something...



So I was thinking the group would be something like



$$G= langle p,r | p^4=r^{11} prp^{-1}=r^5 rangle .$$



Any insight is greatly appreciated! Thanks! I would like to know both where I went wrong and how to do it correctly.





Did I do the above right? Identifying $mathbb{Z_{11}}$ with the additive group of $mathbb{Z_{10}}$? Or should I look at it multiplicatively, because I don't understand how that isomorphism works so it doesn't make sense to define the conjugation that makes the semi-direct product well defined based on elements of the additive group $mathbb{Z_{10}}$, but instead realize that $10 in U(mathbb{Z_{11}})$ has order $2$ so we can have a group presentation something like:



$G = langle p, r | p^2=r^{11}=1 , prp^{-1}=r^{10} rangle$



Insight appreciated!



I understand the dihedral group of the $22$-gon works now, thank you. Can somebody help me with my approach in constructing a non-abelian group of order $44$ via the methods I've been using? Thanks!










share|cite|improve this question











$endgroup$












  • $begingroup$
    I think you meant $r^{11}$ (r^{11}), not $r^11$ (r^11)
    $endgroup$
    – J. W. Tanner
    4 hours ago










  • $begingroup$
    I've taken the liberty of apply the correction J.W. Tanner mentioned, as well as a few other minor fixes.
    $endgroup$
    – Travis
    2 hours ago










  • $begingroup$
    I don’t understand the words, “because $tilde5inBbb Z_{10}$ has order $4$”
    $endgroup$
    – Lubin
    2 hours ago










  • $begingroup$
    Doesn't $tilde{5} in mathbb{Z}_{10}$ have order $2$?
    $endgroup$
    – Peter Shor
    2 hours ago










  • $begingroup$
    And if you have a non-abelian group of order 22, isn't it easy to find one of order 44?
    $endgroup$
    – Peter Shor
    2 hours ago














6












6








6


2



$begingroup$


Let $G$ be a group s.t. $|G|=44=2^211$. Using Sylow's Theorems, I have deduced that there is a unique Sylow $11$-subgroup of $G$; we shall call it $R$. Let $P$ be a Sylow $2$-subgroup of $G$. Then we have $G=Prtimes R$ and a homomorphism



$$gamma: P rightarrow Aut(R)=Aut(mathbb{Z_{11}})cong(mathbb{Z_{10}},+) .$$



Is this all correct so far?



So what about $gamma(p)=phi_p$ where $phi_p(r)=r^5$. I thought this because $tilde{5}inmathbb{Z_{10}}$ has order $4$ so the order of any element of $P$ could divide it... or something...



So I was thinking the group would be something like



$$G= langle p,r | p^4=r^{11} prp^{-1}=r^5 rangle .$$



Any insight is greatly appreciated! Thanks! I would like to know both where I went wrong and how to do it correctly.





Did I do the above right? Identifying $mathbb{Z_{11}}$ with the additive group of $mathbb{Z_{10}}$? Or should I look at it multiplicatively, because I don't understand how that isomorphism works so it doesn't make sense to define the conjugation that makes the semi-direct product well defined based on elements of the additive group $mathbb{Z_{10}}$, but instead realize that $10 in U(mathbb{Z_{11}})$ has order $2$ so we can have a group presentation something like:



$G = langle p, r | p^2=r^{11}=1 , prp^{-1}=r^{10} rangle$



Insight appreciated!



I understand the dihedral group of the $22$-gon works now, thank you. Can somebody help me with my approach in constructing a non-abelian group of order $44$ via the methods I've been using? Thanks!










share|cite|improve this question











$endgroup$




Let $G$ be a group s.t. $|G|=44=2^211$. Using Sylow's Theorems, I have deduced that there is a unique Sylow $11$-subgroup of $G$; we shall call it $R$. Let $P$ be a Sylow $2$-subgroup of $G$. Then we have $G=Prtimes R$ and a homomorphism



$$gamma: P rightarrow Aut(R)=Aut(mathbb{Z_{11}})cong(mathbb{Z_{10}},+) .$$



Is this all correct so far?



So what about $gamma(p)=phi_p$ where $phi_p(r)=r^5$. I thought this because $tilde{5}inmathbb{Z_{10}}$ has order $4$ so the order of any element of $P$ could divide it... or something...



So I was thinking the group would be something like



$$G= langle p,r | p^4=r^{11} prp^{-1}=r^5 rangle .$$



Any insight is greatly appreciated! Thanks! I would like to know both where I went wrong and how to do it correctly.





Did I do the above right? Identifying $mathbb{Z_{11}}$ with the additive group of $mathbb{Z_{10}}$? Or should I look at it multiplicatively, because I don't understand how that isomorphism works so it doesn't make sense to define the conjugation that makes the semi-direct product well defined based on elements of the additive group $mathbb{Z_{10}}$, but instead realize that $10 in U(mathbb{Z_{11}})$ has order $2$ so we can have a group presentation something like:



$G = langle p, r | p^2=r^{11}=1 , prp^{-1}=r^{10} rangle$



Insight appreciated!



I understand the dihedral group of the $22$-gon works now, thank you. Can somebody help me with my approach in constructing a non-abelian group of order $44$ via the methods I've been using? Thanks!







abstract-algebra group-theory sylow-theory group-presentation






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 2 hours ago









Travis

64.6k769152




64.6k769152










asked 5 hours ago









Mathematical MushroomMathematical Mushroom

22418




22418












  • $begingroup$
    I think you meant $r^{11}$ (r^{11}), not $r^11$ (r^11)
    $endgroup$
    – J. W. Tanner
    4 hours ago










  • $begingroup$
    I've taken the liberty of apply the correction J.W. Tanner mentioned, as well as a few other minor fixes.
    $endgroup$
    – Travis
    2 hours ago










  • $begingroup$
    I don’t understand the words, “because $tilde5inBbb Z_{10}$ has order $4$”
    $endgroup$
    – Lubin
    2 hours ago










  • $begingroup$
    Doesn't $tilde{5} in mathbb{Z}_{10}$ have order $2$?
    $endgroup$
    – Peter Shor
    2 hours ago










  • $begingroup$
    And if you have a non-abelian group of order 22, isn't it easy to find one of order 44?
    $endgroup$
    – Peter Shor
    2 hours ago


















  • $begingroup$
    I think you meant $r^{11}$ (r^{11}), not $r^11$ (r^11)
    $endgroup$
    – J. W. Tanner
    4 hours ago










  • $begingroup$
    I've taken the liberty of apply the correction J.W. Tanner mentioned, as well as a few other minor fixes.
    $endgroup$
    – Travis
    2 hours ago










  • $begingroup$
    I don’t understand the words, “because $tilde5inBbb Z_{10}$ has order $4$”
    $endgroup$
    – Lubin
    2 hours ago










  • $begingroup$
    Doesn't $tilde{5} in mathbb{Z}_{10}$ have order $2$?
    $endgroup$
    – Peter Shor
    2 hours ago










  • $begingroup$
    And if you have a non-abelian group of order 22, isn't it easy to find one of order 44?
    $endgroup$
    – Peter Shor
    2 hours ago
















$begingroup$
I think you meant $r^{11}$ (r^{11}), not $r^11$ (r^11)
$endgroup$
– J. W. Tanner
4 hours ago




$begingroup$
I think you meant $r^{11}$ (r^{11}), not $r^11$ (r^11)
$endgroup$
– J. W. Tanner
4 hours ago












$begingroup$
I've taken the liberty of apply the correction J.W. Tanner mentioned, as well as a few other minor fixes.
$endgroup$
– Travis
2 hours ago




$begingroup$
I've taken the liberty of apply the correction J.W. Tanner mentioned, as well as a few other minor fixes.
$endgroup$
– Travis
2 hours ago












$begingroup$
I don’t understand the words, “because $tilde5inBbb Z_{10}$ has order $4$”
$endgroup$
– Lubin
2 hours ago




$begingroup$
I don’t understand the words, “because $tilde5inBbb Z_{10}$ has order $4$”
$endgroup$
– Lubin
2 hours ago












$begingroup$
Doesn't $tilde{5} in mathbb{Z}_{10}$ have order $2$?
$endgroup$
– Peter Shor
2 hours ago




$begingroup$
Doesn't $tilde{5} in mathbb{Z}_{10}$ have order $2$?
$endgroup$
– Peter Shor
2 hours ago












$begingroup$
And if you have a non-abelian group of order 22, isn't it easy to find one of order 44?
$endgroup$
– Peter Shor
2 hours ago




$begingroup$
And if you have a non-abelian group of order 22, isn't it easy to find one of order 44?
$endgroup$
– Peter Shor
2 hours ago










2 Answers
2






active

oldest

votes


















1












$begingroup$

No element of $mathbb Z_{10}$ has order four (why not?) and there is one element of order 2 ($5inmathbb Z_{10}$ under addition, $10cong -1in mathbb Z_{11}^x$ under multiplication.), so our possibilities are quite limited. There are two groups of order $4$, and either will work as our $R$. To give a nonabelian group, we need to pick a nontrivial homomorphism, as you pointed out.



So at least one generator of $R$ has to map to our order-two element. In the case of the Klein four group, there appear to be three possibilities, but I claim that up to an isomorphism of the Klein four group, there is only one possibility.



Actually, this exhausts the possibilities for groups of order 44: we have two abelian groups, $mathbb Z_{11}timesmathbb{Z}_4$, $mathbb Z_{11}times mathbb{Z}_2times mathbb Z_2$, and two nonabelian groups: $mathbb{Z}_{11} rtimes mathbb Z_4 = langle a,b mid a^{11}, b^4, b^{-1}ab = a^{-1}rangle$ and $mathbb Z_{11}rtimes(mathbb Z_2 times mathbb Z_2) = langle a, b, c mid a^{11}, b^2, c^2, [b,c], b^{-1}ab = c^{-1}ac = a^{-1} rangle$. I think the latter is $D_{22}$ (for 22-gon, not order of group), while the former has an element of order $4$.






share|cite|improve this answer











$endgroup$





















    0












    $begingroup$

    You're on the right track (but NB your semidirect product is written in the wrong order). To analyze the possible maps $gamma : P to operatorname{Aut}(Bbb Z_{11}) cong (Bbb Z_{10}, +)$, we consider separately the cases $P cong Bbb Z_2 times Bbb Z_2$ and $P cong Bbb Z_4$.



    In the case $P cong Bbb Z_4$, $P$ is generated by a single element, $[1]$, of order $4$, and so $$operatorname{id}_{Bbb Z_{11}} = gamma([0]) = gamma([1] + [1] + [1] + [1]) = gamma([1])^4 .$$ So, $gamma([1])$ has order dividing $4$, and the only such elements of $operatorname{Aut}(Bbb Z_{11}) cong (Bbb Z_{10}, +)$ are $operatorname{id}_{Bbb Z_{11}} leftrightarrow [0]$ and $(x mapsto -x) leftrightarrow [5]$.




    • If $gamma([1]) = operatorname{id}_{Bbb Z_{11}}$, then $gamma$ is the trivial homomorphism $Bbb Z_4 to operatorname{Aut}(Bbb Z_{11})$. This gives the direct product $G cong Bbb Z_{11} times Bbb Z_4 cong Bbb Z_{44} .$


    • If $gamma([1]) = (x mapsto -x)$, then $gamma([b])([c]) = (-1)^b [c]$, and the semidirect product $G = Bbb Z_{11} rtimes_{gamma} Bbb Z_4$ is defined by
      $$([a], [b]) cdot ([c], [d]) = ([a] + (-1)^b [c], [b] + [d]) .$$ It's apparent from the multiplication rule that this group is nonabelian. The fact that the group is generated by $u := ([1], [0])$ and $v := ([0], [1])$ can be used to construct an explicit presentation of this group and to show that $G$ is the dicyclic group of order $44$.



    One can analyze the case $P cong Bbb Z_2 times Bbb Z_2$ similarly, and this case gives rise to two more groups up to isomorphism, namely the abelian group $Bbb Z_{11} times Bbb Z_2 times Bbb Z_2$ and the (nonabelian) dihedral group $D_{44} cong D_{22} times Bbb Z_2$.






    share|cite|improve this answer











    $endgroup$














      Your Answer








      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3197658%2fconstruct-a-nonabelian-group-of-order-44%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      1












      $begingroup$

      No element of $mathbb Z_{10}$ has order four (why not?) and there is one element of order 2 ($5inmathbb Z_{10}$ under addition, $10cong -1in mathbb Z_{11}^x$ under multiplication.), so our possibilities are quite limited. There are two groups of order $4$, and either will work as our $R$. To give a nonabelian group, we need to pick a nontrivial homomorphism, as you pointed out.



      So at least one generator of $R$ has to map to our order-two element. In the case of the Klein four group, there appear to be three possibilities, but I claim that up to an isomorphism of the Klein four group, there is only one possibility.



      Actually, this exhausts the possibilities for groups of order 44: we have two abelian groups, $mathbb Z_{11}timesmathbb{Z}_4$, $mathbb Z_{11}times mathbb{Z}_2times mathbb Z_2$, and two nonabelian groups: $mathbb{Z}_{11} rtimes mathbb Z_4 = langle a,b mid a^{11}, b^4, b^{-1}ab = a^{-1}rangle$ and $mathbb Z_{11}rtimes(mathbb Z_2 times mathbb Z_2) = langle a, b, c mid a^{11}, b^2, c^2, [b,c], b^{-1}ab = c^{-1}ac = a^{-1} rangle$. I think the latter is $D_{22}$ (for 22-gon, not order of group), while the former has an element of order $4$.






      share|cite|improve this answer











      $endgroup$


















        1












        $begingroup$

        No element of $mathbb Z_{10}$ has order four (why not?) and there is one element of order 2 ($5inmathbb Z_{10}$ under addition, $10cong -1in mathbb Z_{11}^x$ under multiplication.), so our possibilities are quite limited. There are two groups of order $4$, and either will work as our $R$. To give a nonabelian group, we need to pick a nontrivial homomorphism, as you pointed out.



        So at least one generator of $R$ has to map to our order-two element. In the case of the Klein four group, there appear to be three possibilities, but I claim that up to an isomorphism of the Klein four group, there is only one possibility.



        Actually, this exhausts the possibilities for groups of order 44: we have two abelian groups, $mathbb Z_{11}timesmathbb{Z}_4$, $mathbb Z_{11}times mathbb{Z}_2times mathbb Z_2$, and two nonabelian groups: $mathbb{Z}_{11} rtimes mathbb Z_4 = langle a,b mid a^{11}, b^4, b^{-1}ab = a^{-1}rangle$ and $mathbb Z_{11}rtimes(mathbb Z_2 times mathbb Z_2) = langle a, b, c mid a^{11}, b^2, c^2, [b,c], b^{-1}ab = c^{-1}ac = a^{-1} rangle$. I think the latter is $D_{22}$ (for 22-gon, not order of group), while the former has an element of order $4$.






        share|cite|improve this answer











        $endgroup$
















          1












          1








          1





          $begingroup$

          No element of $mathbb Z_{10}$ has order four (why not?) and there is one element of order 2 ($5inmathbb Z_{10}$ under addition, $10cong -1in mathbb Z_{11}^x$ under multiplication.), so our possibilities are quite limited. There are two groups of order $4$, and either will work as our $R$. To give a nonabelian group, we need to pick a nontrivial homomorphism, as you pointed out.



          So at least one generator of $R$ has to map to our order-two element. In the case of the Klein four group, there appear to be three possibilities, but I claim that up to an isomorphism of the Klein four group, there is only one possibility.



          Actually, this exhausts the possibilities for groups of order 44: we have two abelian groups, $mathbb Z_{11}timesmathbb{Z}_4$, $mathbb Z_{11}times mathbb{Z}_2times mathbb Z_2$, and two nonabelian groups: $mathbb{Z}_{11} rtimes mathbb Z_4 = langle a,b mid a^{11}, b^4, b^{-1}ab = a^{-1}rangle$ and $mathbb Z_{11}rtimes(mathbb Z_2 times mathbb Z_2) = langle a, b, c mid a^{11}, b^2, c^2, [b,c], b^{-1}ab = c^{-1}ac = a^{-1} rangle$. I think the latter is $D_{22}$ (for 22-gon, not order of group), while the former has an element of order $4$.






          share|cite|improve this answer











          $endgroup$



          No element of $mathbb Z_{10}$ has order four (why not?) and there is one element of order 2 ($5inmathbb Z_{10}$ under addition, $10cong -1in mathbb Z_{11}^x$ under multiplication.), so our possibilities are quite limited. There are two groups of order $4$, and either will work as our $R$. To give a nonabelian group, we need to pick a nontrivial homomorphism, as you pointed out.



          So at least one generator of $R$ has to map to our order-two element. In the case of the Klein four group, there appear to be three possibilities, but I claim that up to an isomorphism of the Klein four group, there is only one possibility.



          Actually, this exhausts the possibilities for groups of order 44: we have two abelian groups, $mathbb Z_{11}timesmathbb{Z}_4$, $mathbb Z_{11}times mathbb{Z}_2times mathbb Z_2$, and two nonabelian groups: $mathbb{Z}_{11} rtimes mathbb Z_4 = langle a,b mid a^{11}, b^4, b^{-1}ab = a^{-1}rangle$ and $mathbb Z_{11}rtimes(mathbb Z_2 times mathbb Z_2) = langle a, b, c mid a^{11}, b^2, c^2, [b,c], b^{-1}ab = c^{-1}ac = a^{-1} rangle$. I think the latter is $D_{22}$ (for 22-gon, not order of group), while the former has an element of order $4$.







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited 55 mins ago

























          answered 1 hour ago









          Rylee LymanRylee Lyman

          646211




          646211























              0












              $begingroup$

              You're on the right track (but NB your semidirect product is written in the wrong order). To analyze the possible maps $gamma : P to operatorname{Aut}(Bbb Z_{11}) cong (Bbb Z_{10}, +)$, we consider separately the cases $P cong Bbb Z_2 times Bbb Z_2$ and $P cong Bbb Z_4$.



              In the case $P cong Bbb Z_4$, $P$ is generated by a single element, $[1]$, of order $4$, and so $$operatorname{id}_{Bbb Z_{11}} = gamma([0]) = gamma([1] + [1] + [1] + [1]) = gamma([1])^4 .$$ So, $gamma([1])$ has order dividing $4$, and the only such elements of $operatorname{Aut}(Bbb Z_{11}) cong (Bbb Z_{10}, +)$ are $operatorname{id}_{Bbb Z_{11}} leftrightarrow [0]$ and $(x mapsto -x) leftrightarrow [5]$.




              • If $gamma([1]) = operatorname{id}_{Bbb Z_{11}}$, then $gamma$ is the trivial homomorphism $Bbb Z_4 to operatorname{Aut}(Bbb Z_{11})$. This gives the direct product $G cong Bbb Z_{11} times Bbb Z_4 cong Bbb Z_{44} .$


              • If $gamma([1]) = (x mapsto -x)$, then $gamma([b])([c]) = (-1)^b [c]$, and the semidirect product $G = Bbb Z_{11} rtimes_{gamma} Bbb Z_4$ is defined by
                $$([a], [b]) cdot ([c], [d]) = ([a] + (-1)^b [c], [b] + [d]) .$$ It's apparent from the multiplication rule that this group is nonabelian. The fact that the group is generated by $u := ([1], [0])$ and $v := ([0], [1])$ can be used to construct an explicit presentation of this group and to show that $G$ is the dicyclic group of order $44$.



              One can analyze the case $P cong Bbb Z_2 times Bbb Z_2$ similarly, and this case gives rise to two more groups up to isomorphism, namely the abelian group $Bbb Z_{11} times Bbb Z_2 times Bbb Z_2$ and the (nonabelian) dihedral group $D_{44} cong D_{22} times Bbb Z_2$.






              share|cite|improve this answer











              $endgroup$


















                0












                $begingroup$

                You're on the right track (but NB your semidirect product is written in the wrong order). To analyze the possible maps $gamma : P to operatorname{Aut}(Bbb Z_{11}) cong (Bbb Z_{10}, +)$, we consider separately the cases $P cong Bbb Z_2 times Bbb Z_2$ and $P cong Bbb Z_4$.



                In the case $P cong Bbb Z_4$, $P$ is generated by a single element, $[1]$, of order $4$, and so $$operatorname{id}_{Bbb Z_{11}} = gamma([0]) = gamma([1] + [1] + [1] + [1]) = gamma([1])^4 .$$ So, $gamma([1])$ has order dividing $4$, and the only such elements of $operatorname{Aut}(Bbb Z_{11}) cong (Bbb Z_{10}, +)$ are $operatorname{id}_{Bbb Z_{11}} leftrightarrow [0]$ and $(x mapsto -x) leftrightarrow [5]$.




                • If $gamma([1]) = operatorname{id}_{Bbb Z_{11}}$, then $gamma$ is the trivial homomorphism $Bbb Z_4 to operatorname{Aut}(Bbb Z_{11})$. This gives the direct product $G cong Bbb Z_{11} times Bbb Z_4 cong Bbb Z_{44} .$


                • If $gamma([1]) = (x mapsto -x)$, then $gamma([b])([c]) = (-1)^b [c]$, and the semidirect product $G = Bbb Z_{11} rtimes_{gamma} Bbb Z_4$ is defined by
                  $$([a], [b]) cdot ([c], [d]) = ([a] + (-1)^b [c], [b] + [d]) .$$ It's apparent from the multiplication rule that this group is nonabelian. The fact that the group is generated by $u := ([1], [0])$ and $v := ([0], [1])$ can be used to construct an explicit presentation of this group and to show that $G$ is the dicyclic group of order $44$.



                One can analyze the case $P cong Bbb Z_2 times Bbb Z_2$ similarly, and this case gives rise to two more groups up to isomorphism, namely the abelian group $Bbb Z_{11} times Bbb Z_2 times Bbb Z_2$ and the (nonabelian) dihedral group $D_{44} cong D_{22} times Bbb Z_2$.






                share|cite|improve this answer











                $endgroup$
















                  0












                  0








                  0





                  $begingroup$

                  You're on the right track (but NB your semidirect product is written in the wrong order). To analyze the possible maps $gamma : P to operatorname{Aut}(Bbb Z_{11}) cong (Bbb Z_{10}, +)$, we consider separately the cases $P cong Bbb Z_2 times Bbb Z_2$ and $P cong Bbb Z_4$.



                  In the case $P cong Bbb Z_4$, $P$ is generated by a single element, $[1]$, of order $4$, and so $$operatorname{id}_{Bbb Z_{11}} = gamma([0]) = gamma([1] + [1] + [1] + [1]) = gamma([1])^4 .$$ So, $gamma([1])$ has order dividing $4$, and the only such elements of $operatorname{Aut}(Bbb Z_{11}) cong (Bbb Z_{10}, +)$ are $operatorname{id}_{Bbb Z_{11}} leftrightarrow [0]$ and $(x mapsto -x) leftrightarrow [5]$.




                  • If $gamma([1]) = operatorname{id}_{Bbb Z_{11}}$, then $gamma$ is the trivial homomorphism $Bbb Z_4 to operatorname{Aut}(Bbb Z_{11})$. This gives the direct product $G cong Bbb Z_{11} times Bbb Z_4 cong Bbb Z_{44} .$


                  • If $gamma([1]) = (x mapsto -x)$, then $gamma([b])([c]) = (-1)^b [c]$, and the semidirect product $G = Bbb Z_{11} rtimes_{gamma} Bbb Z_4$ is defined by
                    $$([a], [b]) cdot ([c], [d]) = ([a] + (-1)^b [c], [b] + [d]) .$$ It's apparent from the multiplication rule that this group is nonabelian. The fact that the group is generated by $u := ([1], [0])$ and $v := ([0], [1])$ can be used to construct an explicit presentation of this group and to show that $G$ is the dicyclic group of order $44$.



                  One can analyze the case $P cong Bbb Z_2 times Bbb Z_2$ similarly, and this case gives rise to two more groups up to isomorphism, namely the abelian group $Bbb Z_{11} times Bbb Z_2 times Bbb Z_2$ and the (nonabelian) dihedral group $D_{44} cong D_{22} times Bbb Z_2$.






                  share|cite|improve this answer











                  $endgroup$



                  You're on the right track (but NB your semidirect product is written in the wrong order). To analyze the possible maps $gamma : P to operatorname{Aut}(Bbb Z_{11}) cong (Bbb Z_{10}, +)$, we consider separately the cases $P cong Bbb Z_2 times Bbb Z_2$ and $P cong Bbb Z_4$.



                  In the case $P cong Bbb Z_4$, $P$ is generated by a single element, $[1]$, of order $4$, and so $$operatorname{id}_{Bbb Z_{11}} = gamma([0]) = gamma([1] + [1] + [1] + [1]) = gamma([1])^4 .$$ So, $gamma([1])$ has order dividing $4$, and the only such elements of $operatorname{Aut}(Bbb Z_{11}) cong (Bbb Z_{10}, +)$ are $operatorname{id}_{Bbb Z_{11}} leftrightarrow [0]$ and $(x mapsto -x) leftrightarrow [5]$.




                  • If $gamma([1]) = operatorname{id}_{Bbb Z_{11}}$, then $gamma$ is the trivial homomorphism $Bbb Z_4 to operatorname{Aut}(Bbb Z_{11})$. This gives the direct product $G cong Bbb Z_{11} times Bbb Z_4 cong Bbb Z_{44} .$


                  • If $gamma([1]) = (x mapsto -x)$, then $gamma([b])([c]) = (-1)^b [c]$, and the semidirect product $G = Bbb Z_{11} rtimes_{gamma} Bbb Z_4$ is defined by
                    $$([a], [b]) cdot ([c], [d]) = ([a] + (-1)^b [c], [b] + [d]) .$$ It's apparent from the multiplication rule that this group is nonabelian. The fact that the group is generated by $u := ([1], [0])$ and $v := ([0], [1])$ can be used to construct an explicit presentation of this group and to show that $G$ is the dicyclic group of order $44$.



                  One can analyze the case $P cong Bbb Z_2 times Bbb Z_2$ similarly, and this case gives rise to two more groups up to isomorphism, namely the abelian group $Bbb Z_{11} times Bbb Z_2 times Bbb Z_2$ and the (nonabelian) dihedral group $D_{44} cong D_{22} times Bbb Z_2$.







                  share|cite|improve this answer














                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited 1 hour ago

























                  answered 1 hour ago









                  TravisTravis

                  64.6k769152




                  64.6k769152






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3197658%2fconstruct-a-nonabelian-group-of-order-44%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Why does my Macbook overheat and use so much CPU and energy when on YouTube?Why do so many insist on using...

                      How to prevent page numbers from appearing on glossaries?How to remove a dot and a page number in the...

                      Puerta de Hutt Referencias Enlaces externos Menú de navegación15°58′00″S 5°42′00″O /...