How much damage would a cupful of neutron star matter do to the Earth? Announcing the arrival...
What would you call this weird metallic apparatus that allows you to lift people?
Effects on objects due to a brief relocation of massive amounts of mass
What initially awakened the Balrog?
How come Sam didn't become Lord of Horn Hill?
Did Deadpool rescue all of the X-Force?
AppleTVs create a chatty alternate WiFi network
Has negative voting ever been officially implemented in elections, or seriously proposed, or even studied?
Disembodied hand growing fangs
Hangman Game with C++
Amount of permutations on an NxNxN Rubik's Cube
Why is my ESD wriststrap failing with nitrile gloves on?
Does the Weapon Master feat grant you a fighting style?
What's the meaning of "fortified infraction restraint"?
How do living politicians protect their readily obtainable signatures from misuse?
Do wooden building fires get hotter than 600°C?
Can anything be seen from the center of the Boötes void? How dark would it be?
What is the topology associated with the algebras for the ultrafilter monad?
Drawing without replacement: why is the order of draw irrelevant?
What does it mean that physics no longer uses mechanical models to describe phenomena?
What is this clumpy 20-30cm high yellow-flowered plant?
Question about debouncing - delay of state change
The code below, is it ill-formed NDR or is it well formed?
Time to Settle Down!
How can I reduce the gap between left and right of cdot with a macro?
How much damage would a cupful of neutron star matter do to the Earth?
Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 23, 2019 at 00:00UTC (8:00pm US/Eastern)
The network's official Twitter account is up and running again. What content…How To Make an Earth with 27 Suns Work, Attempt Two: Orbital StabilityHow do I create the largest possible space habitat for humans?Could humans go from earth to an exoplanet 5 times the size of jupiterWould a water-bearing, Earth-sized moon orbiting a gas giant have tides?How much mass does an object in low earth orbit need to create visible gravitational effects on the surface?Could the moon crash into the earth if we colonised it and increased its mass?How to make a bigger planet be as similar to Earth as possibleIs there a plausible causal mechanism to explain why the Sun would be heating up faster/ sooner than we thought?Effects of a close approach with a non-pulsar neutron star?
$begingroup$
Suppose we used SCP-261, the vending machine that produces anything, and ask for a cup of neutron star. The machine instantaneously produces this.
Suppose also that the vending machine is located at a normal office building, not some underground lair or the like.
What effect would this have, and how much damage would it do? Would it kill everyone in the building? Destroy the Earth? Surprisingly very little effect?
astrophysics
$endgroup$
add a comment |
$begingroup$
Suppose we used SCP-261, the vending machine that produces anything, and ask for a cup of neutron star. The machine instantaneously produces this.
Suppose also that the vending machine is located at a normal office building, not some underground lair or the like.
What effect would this have, and how much damage would it do? Would it kill everyone in the building? Destroy the Earth? Surprisingly very little effect?
astrophysics
$endgroup$
$begingroup$
Where would this vending machine get all that matter, because if it already had that (or the energy equivalent) it would be a chunk of a neutron star itself ? People, as they say, would notice (very, very briefly, before they were wiped out by a globally catastrophic explosion).
$endgroup$
– StephenG
51 mins ago
add a comment |
$begingroup$
Suppose we used SCP-261, the vending machine that produces anything, and ask for a cup of neutron star. The machine instantaneously produces this.
Suppose also that the vending machine is located at a normal office building, not some underground lair or the like.
What effect would this have, and how much damage would it do? Would it kill everyone in the building? Destroy the Earth? Surprisingly very little effect?
astrophysics
$endgroup$
Suppose we used SCP-261, the vending machine that produces anything, and ask for a cup of neutron star. The machine instantaneously produces this.
Suppose also that the vending machine is located at a normal office building, not some underground lair or the like.
What effect would this have, and how much damage would it do? Would it kill everyone in the building? Destroy the Earth? Surprisingly very little effect?
astrophysics
astrophysics
asked 2 hours ago
Quadratic WizardQuadratic Wizard
1856
1856
$begingroup$
Where would this vending machine get all that matter, because if it already had that (or the energy equivalent) it would be a chunk of a neutron star itself ? People, as they say, would notice (very, very briefly, before they were wiped out by a globally catastrophic explosion).
$endgroup$
– StephenG
51 mins ago
add a comment |
$begingroup$
Where would this vending machine get all that matter, because if it already had that (or the energy equivalent) it would be a chunk of a neutron star itself ? People, as they say, would notice (very, very briefly, before they were wiped out by a globally catastrophic explosion).
$endgroup$
– StephenG
51 mins ago
$begingroup$
Where would this vending machine get all that matter, because if it already had that (or the energy equivalent) it would be a chunk of a neutron star itself ? People, as they say, would notice (very, very briefly, before they were wiped out by a globally catastrophic explosion).
$endgroup$
– StephenG
51 mins ago
$begingroup$
Where would this vending machine get all that matter, because if it already had that (or the energy equivalent) it would be a chunk of a neutron star itself ? People, as they say, would notice (very, very briefly, before they were wiped out by a globally catastrophic explosion).
$endgroup$
– StephenG
51 mins ago
add a comment |
4 Answers
4
active
oldest
votes
$begingroup$
The answer isn't entirely clear what the final state of the Neutron Star matter would be, but it would most definitely completely destroy the "Totally Normal Office Building", and most of the country... and probably most life on Earth.
See this related question: https://physics.stackexchange.com/questions/10052/what-would-happen-to-a-teaspoon-of-neutron-star-material-if-released-on-earth
$endgroup$
$begingroup$
+1, an answer to the linked question estimated energy release several orders of magnitude higher than Chicxulub impact (an that question was asking only about a teaspoon of "neutronium").
$endgroup$
– Alexander
2 hours ago
$begingroup$
"Destroy.. and probably most life on Earth" is such a comically conservative "probably" considering the link says the explosion is 3500 times bigger than the one that killed the dinosaurs. Throw in radiation? You're gonna feel this one on Pluto...
$endgroup$
– Muuski
2 hours ago
$begingroup$
Be fair, @Muuski - you're not going to feel it on Pluto. There are ~50 teaspoons in a cup, so it'd just be 7.5 x 10^27 J, or the emissions of the sun for about 20 seconds released over a shorter timescale. Depending on Earth's position relative to Pluto in the solar system, it might not even be detectable.
$endgroup$
– jdunlop
1 hour ago
$begingroup$
That said, there definitely won't be much left of Earth.
$endgroup$
– jdunlop
1 hour ago
$begingroup$
@jdunlop that's still much less that Theia impact, so Earth as a planet would survive.
$endgroup$
– Alexander
1 hour ago
add a comment |
$begingroup$
If you google for "dendity of neutron star in kg/cm3, you get an example of one that reaches 7 x 1014 grams per cc. A 200ml cup would have 1.4 x 1014 kilograms of mass.
Let me rephrase without exponentiation. It would weight 140,000,000,000,000 kilograms.
For comparison, the mass of the Earth is close to 6 x 1024 kg. That is 10 billions more massive than your cup, but at a density that is closer to 5.5 grams per cc.
Anyway, back to the office. The cup will fall from the machine and rip a hole as it sinks to the core of the Earth, displacing crust and exposing a bit of mantle in the way. The people and things closer to it will be torn apart and pulled along it due to its gravity - it may be a tenth of a billion as massive as the Earth but you are 6,400 km closer to it.
Throughout the Earth, powerful tectonic shockwaves cross the planet a couple or more times. The Planet will wobble a bit as the center of gravity readjusts. Earth will be slightly more massive, so its gravity will be stronger - but not enough for us to perceive.
The only lasting effect noticeable by us is that the orbital period of the Moon will be shortened by a few hours. Oh, and the mega crater at wherever it happened.
$endgroup$
add a comment |
$begingroup$
I don't have the full answer you're looking for - exactly how much damage will be done - but that is definitely going to explode, very spectacularly. And the vapour that used to be your coffee cup will be radioactive.
You suddenly have more stuff in your cup than should reasonably exist in your whole building. The pressure will, eventually, equalise. There will be a shockwave while that works itself out.
Free neutrons will not exist for more than a few minutes at Earth pressure. They would decay, releasing a lot of energy. Unless they collide with an atom first, which will tend to make the atom unstable (ie radioactive). There are more free neutrons in that cup than there are atoms in your office, so this isn't going to be pleasant.
$endgroup$
add a comment |
$begingroup$
According to the answers to the Physics question linked by abestrange this would result in the Earth being hit by 250 million tonnes of neutrons travelling at .1c+. I feel confident this would turn everything above horizon radioactive including significant portion of the ground beneath. Neutron scattering would extend this beyond the horizon too.
Bulk of the energy would then transform into heat creating a huge fire storm that lifts much of the irradiated material into stratosphere. Gravity will then bring it down "somewhere". Normally you'd have to start thinking about wind patterns and the amount of debris but in this case I think we can just assume the entire surface of the Earth comes covered by radioactive crap.
Which is a good thing because once it is down it is no longer stopping sunlight.
Just noticed that the amount in this question is much larger than the one in the physics question but frankly it doesn't really matter, does it? Only real change is that the extra energy removes all need you might have had to worry about the fallout coverage.
So "everybody dies"? Although people who still have nuclear fallout shelters and are far enough will have time to take cover. Not sure how survivable that actually is. I think they were mostly intended to protect people when the city they are in gets blasted not to support populations when the entire surface is irradiated.
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "579"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fworldbuilding.stackexchange.com%2fquestions%2f144367%2fhow-much-damage-would-a-cupful-of-neutron-star-matter-do-to-the-earth%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The answer isn't entirely clear what the final state of the Neutron Star matter would be, but it would most definitely completely destroy the "Totally Normal Office Building", and most of the country... and probably most life on Earth.
See this related question: https://physics.stackexchange.com/questions/10052/what-would-happen-to-a-teaspoon-of-neutron-star-material-if-released-on-earth
$endgroup$
$begingroup$
+1, an answer to the linked question estimated energy release several orders of magnitude higher than Chicxulub impact (an that question was asking only about a teaspoon of "neutronium").
$endgroup$
– Alexander
2 hours ago
$begingroup$
"Destroy.. and probably most life on Earth" is such a comically conservative "probably" considering the link says the explosion is 3500 times bigger than the one that killed the dinosaurs. Throw in radiation? You're gonna feel this one on Pluto...
$endgroup$
– Muuski
2 hours ago
$begingroup$
Be fair, @Muuski - you're not going to feel it on Pluto. There are ~50 teaspoons in a cup, so it'd just be 7.5 x 10^27 J, or the emissions of the sun for about 20 seconds released over a shorter timescale. Depending on Earth's position relative to Pluto in the solar system, it might not even be detectable.
$endgroup$
– jdunlop
1 hour ago
$begingroup$
That said, there definitely won't be much left of Earth.
$endgroup$
– jdunlop
1 hour ago
$begingroup$
@jdunlop that's still much less that Theia impact, so Earth as a planet would survive.
$endgroup$
– Alexander
1 hour ago
add a comment |
$begingroup$
The answer isn't entirely clear what the final state of the Neutron Star matter would be, but it would most definitely completely destroy the "Totally Normal Office Building", and most of the country... and probably most life on Earth.
See this related question: https://physics.stackexchange.com/questions/10052/what-would-happen-to-a-teaspoon-of-neutron-star-material-if-released-on-earth
$endgroup$
$begingroup$
+1, an answer to the linked question estimated energy release several orders of magnitude higher than Chicxulub impact (an that question was asking only about a teaspoon of "neutronium").
$endgroup$
– Alexander
2 hours ago
$begingroup$
"Destroy.. and probably most life on Earth" is such a comically conservative "probably" considering the link says the explosion is 3500 times bigger than the one that killed the dinosaurs. Throw in radiation? You're gonna feel this one on Pluto...
$endgroup$
– Muuski
2 hours ago
$begingroup$
Be fair, @Muuski - you're not going to feel it on Pluto. There are ~50 teaspoons in a cup, so it'd just be 7.5 x 10^27 J, or the emissions of the sun for about 20 seconds released over a shorter timescale. Depending on Earth's position relative to Pluto in the solar system, it might not even be detectable.
$endgroup$
– jdunlop
1 hour ago
$begingroup$
That said, there definitely won't be much left of Earth.
$endgroup$
– jdunlop
1 hour ago
$begingroup$
@jdunlop that's still much less that Theia impact, so Earth as a planet would survive.
$endgroup$
– Alexander
1 hour ago
add a comment |
$begingroup$
The answer isn't entirely clear what the final state of the Neutron Star matter would be, but it would most definitely completely destroy the "Totally Normal Office Building", and most of the country... and probably most life on Earth.
See this related question: https://physics.stackexchange.com/questions/10052/what-would-happen-to-a-teaspoon-of-neutron-star-material-if-released-on-earth
$endgroup$
The answer isn't entirely clear what the final state of the Neutron Star matter would be, but it would most definitely completely destroy the "Totally Normal Office Building", and most of the country... and probably most life on Earth.
See this related question: https://physics.stackexchange.com/questions/10052/what-would-happen-to-a-teaspoon-of-neutron-star-material-if-released-on-earth
answered 2 hours ago
abestrangeabestrange
1,7921312
1,7921312
$begingroup$
+1, an answer to the linked question estimated energy release several orders of magnitude higher than Chicxulub impact (an that question was asking only about a teaspoon of "neutronium").
$endgroup$
– Alexander
2 hours ago
$begingroup$
"Destroy.. and probably most life on Earth" is such a comically conservative "probably" considering the link says the explosion is 3500 times bigger than the one that killed the dinosaurs. Throw in radiation? You're gonna feel this one on Pluto...
$endgroup$
– Muuski
2 hours ago
$begingroup$
Be fair, @Muuski - you're not going to feel it on Pluto. There are ~50 teaspoons in a cup, so it'd just be 7.5 x 10^27 J, or the emissions of the sun for about 20 seconds released over a shorter timescale. Depending on Earth's position relative to Pluto in the solar system, it might not even be detectable.
$endgroup$
– jdunlop
1 hour ago
$begingroup$
That said, there definitely won't be much left of Earth.
$endgroup$
– jdunlop
1 hour ago
$begingroup$
@jdunlop that's still much less that Theia impact, so Earth as a planet would survive.
$endgroup$
– Alexander
1 hour ago
add a comment |
$begingroup$
+1, an answer to the linked question estimated energy release several orders of magnitude higher than Chicxulub impact (an that question was asking only about a teaspoon of "neutronium").
$endgroup$
– Alexander
2 hours ago
$begingroup$
"Destroy.. and probably most life on Earth" is such a comically conservative "probably" considering the link says the explosion is 3500 times bigger than the one that killed the dinosaurs. Throw in radiation? You're gonna feel this one on Pluto...
$endgroup$
– Muuski
2 hours ago
$begingroup$
Be fair, @Muuski - you're not going to feel it on Pluto. There are ~50 teaspoons in a cup, so it'd just be 7.5 x 10^27 J, or the emissions of the sun for about 20 seconds released over a shorter timescale. Depending on Earth's position relative to Pluto in the solar system, it might not even be detectable.
$endgroup$
– jdunlop
1 hour ago
$begingroup$
That said, there definitely won't be much left of Earth.
$endgroup$
– jdunlop
1 hour ago
$begingroup$
@jdunlop that's still much less that Theia impact, so Earth as a planet would survive.
$endgroup$
– Alexander
1 hour ago
$begingroup$
+1, an answer to the linked question estimated energy release several orders of magnitude higher than Chicxulub impact (an that question was asking only about a teaspoon of "neutronium").
$endgroup$
– Alexander
2 hours ago
$begingroup$
+1, an answer to the linked question estimated energy release several orders of magnitude higher than Chicxulub impact (an that question was asking only about a teaspoon of "neutronium").
$endgroup$
– Alexander
2 hours ago
$begingroup$
"Destroy.. and probably most life on Earth" is such a comically conservative "probably" considering the link says the explosion is 3500 times bigger than the one that killed the dinosaurs. Throw in radiation? You're gonna feel this one on Pluto...
$endgroup$
– Muuski
2 hours ago
$begingroup$
"Destroy.. and probably most life on Earth" is such a comically conservative "probably" considering the link says the explosion is 3500 times bigger than the one that killed the dinosaurs. Throw in radiation? You're gonna feel this one on Pluto...
$endgroup$
– Muuski
2 hours ago
$begingroup$
Be fair, @Muuski - you're not going to feel it on Pluto. There are ~50 teaspoons in a cup, so it'd just be 7.5 x 10^27 J, or the emissions of the sun for about 20 seconds released over a shorter timescale. Depending on Earth's position relative to Pluto in the solar system, it might not even be detectable.
$endgroup$
– jdunlop
1 hour ago
$begingroup$
Be fair, @Muuski - you're not going to feel it on Pluto. There are ~50 teaspoons in a cup, so it'd just be 7.5 x 10^27 J, or the emissions of the sun for about 20 seconds released over a shorter timescale. Depending on Earth's position relative to Pluto in the solar system, it might not even be detectable.
$endgroup$
– jdunlop
1 hour ago
$begingroup$
That said, there definitely won't be much left of Earth.
$endgroup$
– jdunlop
1 hour ago
$begingroup$
That said, there definitely won't be much left of Earth.
$endgroup$
– jdunlop
1 hour ago
$begingroup$
@jdunlop that's still much less that Theia impact, so Earth as a planet would survive.
$endgroup$
– Alexander
1 hour ago
$begingroup$
@jdunlop that's still much less that Theia impact, so Earth as a planet would survive.
$endgroup$
– Alexander
1 hour ago
add a comment |
$begingroup$
If you google for "dendity of neutron star in kg/cm3, you get an example of one that reaches 7 x 1014 grams per cc. A 200ml cup would have 1.4 x 1014 kilograms of mass.
Let me rephrase without exponentiation. It would weight 140,000,000,000,000 kilograms.
For comparison, the mass of the Earth is close to 6 x 1024 kg. That is 10 billions more massive than your cup, but at a density that is closer to 5.5 grams per cc.
Anyway, back to the office. The cup will fall from the machine and rip a hole as it sinks to the core of the Earth, displacing crust and exposing a bit of mantle in the way. The people and things closer to it will be torn apart and pulled along it due to its gravity - it may be a tenth of a billion as massive as the Earth but you are 6,400 km closer to it.
Throughout the Earth, powerful tectonic shockwaves cross the planet a couple or more times. The Planet will wobble a bit as the center of gravity readjusts. Earth will be slightly more massive, so its gravity will be stronger - but not enough for us to perceive.
The only lasting effect noticeable by us is that the orbital period of the Moon will be shortened by a few hours. Oh, and the mega crater at wherever it happened.
$endgroup$
add a comment |
$begingroup$
If you google for "dendity of neutron star in kg/cm3, you get an example of one that reaches 7 x 1014 grams per cc. A 200ml cup would have 1.4 x 1014 kilograms of mass.
Let me rephrase without exponentiation. It would weight 140,000,000,000,000 kilograms.
For comparison, the mass of the Earth is close to 6 x 1024 kg. That is 10 billions more massive than your cup, but at a density that is closer to 5.5 grams per cc.
Anyway, back to the office. The cup will fall from the machine and rip a hole as it sinks to the core of the Earth, displacing crust and exposing a bit of mantle in the way. The people and things closer to it will be torn apart and pulled along it due to its gravity - it may be a tenth of a billion as massive as the Earth but you are 6,400 km closer to it.
Throughout the Earth, powerful tectonic shockwaves cross the planet a couple or more times. The Planet will wobble a bit as the center of gravity readjusts. Earth will be slightly more massive, so its gravity will be stronger - but not enough for us to perceive.
The only lasting effect noticeable by us is that the orbital period of the Moon will be shortened by a few hours. Oh, and the mega crater at wherever it happened.
$endgroup$
add a comment |
$begingroup$
If you google for "dendity of neutron star in kg/cm3, you get an example of one that reaches 7 x 1014 grams per cc. A 200ml cup would have 1.4 x 1014 kilograms of mass.
Let me rephrase without exponentiation. It would weight 140,000,000,000,000 kilograms.
For comparison, the mass of the Earth is close to 6 x 1024 kg. That is 10 billions more massive than your cup, but at a density that is closer to 5.5 grams per cc.
Anyway, back to the office. The cup will fall from the machine and rip a hole as it sinks to the core of the Earth, displacing crust and exposing a bit of mantle in the way. The people and things closer to it will be torn apart and pulled along it due to its gravity - it may be a tenth of a billion as massive as the Earth but you are 6,400 km closer to it.
Throughout the Earth, powerful tectonic shockwaves cross the planet a couple or more times. The Planet will wobble a bit as the center of gravity readjusts. Earth will be slightly more massive, so its gravity will be stronger - but not enough for us to perceive.
The only lasting effect noticeable by us is that the orbital period of the Moon will be shortened by a few hours. Oh, and the mega crater at wherever it happened.
$endgroup$
If you google for "dendity of neutron star in kg/cm3, you get an example of one that reaches 7 x 1014 grams per cc. A 200ml cup would have 1.4 x 1014 kilograms of mass.
Let me rephrase without exponentiation. It would weight 140,000,000,000,000 kilograms.
For comparison, the mass of the Earth is close to 6 x 1024 kg. That is 10 billions more massive than your cup, but at a density that is closer to 5.5 grams per cc.
Anyway, back to the office. The cup will fall from the machine and rip a hole as it sinks to the core of the Earth, displacing crust and exposing a bit of mantle in the way. The people and things closer to it will be torn apart and pulled along it due to its gravity - it may be a tenth of a billion as massive as the Earth but you are 6,400 km closer to it.
Throughout the Earth, powerful tectonic shockwaves cross the planet a couple or more times. The Planet will wobble a bit as the center of gravity readjusts. Earth will be slightly more massive, so its gravity will be stronger - but not enough for us to perceive.
The only lasting effect noticeable by us is that the orbital period of the Moon will be shortened by a few hours. Oh, and the mega crater at wherever it happened.
answered 1 hour ago
RenanRenan
53.7k15122267
53.7k15122267
add a comment |
add a comment |
$begingroup$
I don't have the full answer you're looking for - exactly how much damage will be done - but that is definitely going to explode, very spectacularly. And the vapour that used to be your coffee cup will be radioactive.
You suddenly have more stuff in your cup than should reasonably exist in your whole building. The pressure will, eventually, equalise. There will be a shockwave while that works itself out.
Free neutrons will not exist for more than a few minutes at Earth pressure. They would decay, releasing a lot of energy. Unless they collide with an atom first, which will tend to make the atom unstable (ie radioactive). There are more free neutrons in that cup than there are atoms in your office, so this isn't going to be pleasant.
$endgroup$
add a comment |
$begingroup$
I don't have the full answer you're looking for - exactly how much damage will be done - but that is definitely going to explode, very spectacularly. And the vapour that used to be your coffee cup will be radioactive.
You suddenly have more stuff in your cup than should reasonably exist in your whole building. The pressure will, eventually, equalise. There will be a shockwave while that works itself out.
Free neutrons will not exist for more than a few minutes at Earth pressure. They would decay, releasing a lot of energy. Unless they collide with an atom first, which will tend to make the atom unstable (ie radioactive). There are more free neutrons in that cup than there are atoms in your office, so this isn't going to be pleasant.
$endgroup$
add a comment |
$begingroup$
I don't have the full answer you're looking for - exactly how much damage will be done - but that is definitely going to explode, very spectacularly. And the vapour that used to be your coffee cup will be radioactive.
You suddenly have more stuff in your cup than should reasonably exist in your whole building. The pressure will, eventually, equalise. There will be a shockwave while that works itself out.
Free neutrons will not exist for more than a few minutes at Earth pressure. They would decay, releasing a lot of energy. Unless they collide with an atom first, which will tend to make the atom unstable (ie radioactive). There are more free neutrons in that cup than there are atoms in your office, so this isn't going to be pleasant.
$endgroup$
I don't have the full answer you're looking for - exactly how much damage will be done - but that is definitely going to explode, very spectacularly. And the vapour that used to be your coffee cup will be radioactive.
You suddenly have more stuff in your cup than should reasonably exist in your whole building. The pressure will, eventually, equalise. There will be a shockwave while that works itself out.
Free neutrons will not exist for more than a few minutes at Earth pressure. They would decay, releasing a lot of energy. Unless they collide with an atom first, which will tend to make the atom unstable (ie radioactive). There are more free neutrons in that cup than there are atoms in your office, so this isn't going to be pleasant.
answered 2 hours ago
RobynRobyn
98436
98436
add a comment |
add a comment |
$begingroup$
According to the answers to the Physics question linked by abestrange this would result in the Earth being hit by 250 million tonnes of neutrons travelling at .1c+. I feel confident this would turn everything above horizon radioactive including significant portion of the ground beneath. Neutron scattering would extend this beyond the horizon too.
Bulk of the energy would then transform into heat creating a huge fire storm that lifts much of the irradiated material into stratosphere. Gravity will then bring it down "somewhere". Normally you'd have to start thinking about wind patterns and the amount of debris but in this case I think we can just assume the entire surface of the Earth comes covered by radioactive crap.
Which is a good thing because once it is down it is no longer stopping sunlight.
Just noticed that the amount in this question is much larger than the one in the physics question but frankly it doesn't really matter, does it? Only real change is that the extra energy removes all need you might have had to worry about the fallout coverage.
So "everybody dies"? Although people who still have nuclear fallout shelters and are far enough will have time to take cover. Not sure how survivable that actually is. I think they were mostly intended to protect people when the city they are in gets blasted not to support populations when the entire surface is irradiated.
$endgroup$
add a comment |
$begingroup$
According to the answers to the Physics question linked by abestrange this would result in the Earth being hit by 250 million tonnes of neutrons travelling at .1c+. I feel confident this would turn everything above horizon radioactive including significant portion of the ground beneath. Neutron scattering would extend this beyond the horizon too.
Bulk of the energy would then transform into heat creating a huge fire storm that lifts much of the irradiated material into stratosphere. Gravity will then bring it down "somewhere". Normally you'd have to start thinking about wind patterns and the amount of debris but in this case I think we can just assume the entire surface of the Earth comes covered by radioactive crap.
Which is a good thing because once it is down it is no longer stopping sunlight.
Just noticed that the amount in this question is much larger than the one in the physics question but frankly it doesn't really matter, does it? Only real change is that the extra energy removes all need you might have had to worry about the fallout coverage.
So "everybody dies"? Although people who still have nuclear fallout shelters and are far enough will have time to take cover. Not sure how survivable that actually is. I think they were mostly intended to protect people when the city they are in gets blasted not to support populations when the entire surface is irradiated.
$endgroup$
add a comment |
$begingroup$
According to the answers to the Physics question linked by abestrange this would result in the Earth being hit by 250 million tonnes of neutrons travelling at .1c+. I feel confident this would turn everything above horizon radioactive including significant portion of the ground beneath. Neutron scattering would extend this beyond the horizon too.
Bulk of the energy would then transform into heat creating a huge fire storm that lifts much of the irradiated material into stratosphere. Gravity will then bring it down "somewhere". Normally you'd have to start thinking about wind patterns and the amount of debris but in this case I think we can just assume the entire surface of the Earth comes covered by radioactive crap.
Which is a good thing because once it is down it is no longer stopping sunlight.
Just noticed that the amount in this question is much larger than the one in the physics question but frankly it doesn't really matter, does it? Only real change is that the extra energy removes all need you might have had to worry about the fallout coverage.
So "everybody dies"? Although people who still have nuclear fallout shelters and are far enough will have time to take cover. Not sure how survivable that actually is. I think they were mostly intended to protect people when the city they are in gets blasted not to support populations when the entire surface is irradiated.
$endgroup$
According to the answers to the Physics question linked by abestrange this would result in the Earth being hit by 250 million tonnes of neutrons travelling at .1c+. I feel confident this would turn everything above horizon radioactive including significant portion of the ground beneath. Neutron scattering would extend this beyond the horizon too.
Bulk of the energy would then transform into heat creating a huge fire storm that lifts much of the irradiated material into stratosphere. Gravity will then bring it down "somewhere". Normally you'd have to start thinking about wind patterns and the amount of debris but in this case I think we can just assume the entire surface of the Earth comes covered by radioactive crap.
Which is a good thing because once it is down it is no longer stopping sunlight.
Just noticed that the amount in this question is much larger than the one in the physics question but frankly it doesn't really matter, does it? Only real change is that the extra energy removes all need you might have had to worry about the fallout coverage.
So "everybody dies"? Although people who still have nuclear fallout shelters and are far enough will have time to take cover. Not sure how survivable that actually is. I think they were mostly intended to protect people when the city they are in gets blasted not to support populations when the entire surface is irradiated.
answered 12 mins ago
Ville NiemiVille Niemi
35.6k260121
35.6k260121
add a comment |
add a comment |
Thanks for contributing an answer to Worldbuilding Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fworldbuilding.stackexchange.com%2fquestions%2f144367%2fhow-much-damage-would-a-cupful-of-neutron-star-matter-do-to-the-earth%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Where would this vending machine get all that matter, because if it already had that (or the energy equivalent) it would be a chunk of a neutron star itself ? People, as they say, would notice (very, very briefly, before they were wiped out by a globally catastrophic explosion).
$endgroup$
– StephenG
51 mins ago