Calculating Wattage for Resistor in High Frequency Application?Resistor wattage?Resistor wattage for HDMI...
If a character has darkvision, can they see through an area of nonmagical darkness filled with lightly obscuring gas?
Multiplicative persistence
Why Shazam when there is already Superman?
Can I sign legal documents with a smiley face?
Why should universal income be universal?
Electoral considerations aside, what are potential benefits, for the US, of policy changes proposed by the tweet recognizing Golan annexation?
Did arcade monitors have same pixel aspect ratio as TV sets?
On a tidally locked planet, would time be quantized?
Drawing ramified coverings with tikz
It grows, but water kills it
Did Swami Prabhupada reject Advaita?
Longest common substring in linear time
What if a revenant (monster) gains fire resistance?
Travelling outside the UK without a passport
C++ debug/print custom type with GDB : the case of nlohmann json library
Are paving bricks differently sized for sand bedding vs mortar bedding?
Where does the bonus feat in the cleric starting package come from?
If infinitesimal transformations commute why dont the generators of the Lorentz group commute?
Are the IPv6 address space and IPv4 address space completely disjoint?
A social experiment. What is the worst that can happen?
Is it better practice to read straight from sheet music rather than memorize it?
Is it improper etiquette to ask your opponent what his/her rating is before the game?
Melting point of aspirin, contradicting sources
Store Credit Card Information in Password Manager?
Calculating Wattage for Resistor in High Frequency Application?
Resistor wattage?Resistor wattage for HDMI hackTLC5940NT + 12v 5050 led stripImprove Rise Time on 1Hz SignalDetermining the surge duration of a double exponential transient?Resistor surge ratingZero Crossing Detection of ~ 400 kHz Signal with MCUpower supply remote sense protection resistor value?calculating maximum sense speed of amplified phototransistor circuitMay I use a smaller wattage resistor as mosfet's gate driver for a very short time?
$begingroup$
I am making a MOSFET driving circuit.
Frequency : 400 kHz [50% duty cycle]
Gate voltage: 12 V
Total gate charge : 210 nC as per datasheet IRFP460
Rise time: 100 ns
[Q=I*t]
Current: 2.1 A
Gate resistor: V/I > 12/2.1 > 5.7 ohm
Peak power: I * I * R > 2.1 * 2.1 * 5.7 > 25.1370 W
Average power: [Peak Power/Frequency]: 25.1370/400000 > 0.0000628425 [Ws]
1 watt resistor is OK ?
resistors high-frequency
$endgroup$
add a comment |
$begingroup$
I am making a MOSFET driving circuit.
Frequency : 400 kHz [50% duty cycle]
Gate voltage: 12 V
Total gate charge : 210 nC as per datasheet IRFP460
Rise time: 100 ns
[Q=I*t]
Current: 2.1 A
Gate resistor: V/I > 12/2.1 > 5.7 ohm
Peak power: I * I * R > 2.1 * 2.1 * 5.7 > 25.1370 W
Average power: [Peak Power/Frequency]: 25.1370/400000 > 0.0000628425 [Ws]
1 watt resistor is OK ?
resistors high-frequency
$endgroup$
$begingroup$
Dividing peak power by frequency doesn't make sense to me. As you say, the units are watt-seconds, not watts.
$endgroup$
– Elliot Alderson
3 hours ago
add a comment |
$begingroup$
I am making a MOSFET driving circuit.
Frequency : 400 kHz [50% duty cycle]
Gate voltage: 12 V
Total gate charge : 210 nC as per datasheet IRFP460
Rise time: 100 ns
[Q=I*t]
Current: 2.1 A
Gate resistor: V/I > 12/2.1 > 5.7 ohm
Peak power: I * I * R > 2.1 * 2.1 * 5.7 > 25.1370 W
Average power: [Peak Power/Frequency]: 25.1370/400000 > 0.0000628425 [Ws]
1 watt resistor is OK ?
resistors high-frequency
$endgroup$
I am making a MOSFET driving circuit.
Frequency : 400 kHz [50% duty cycle]
Gate voltage: 12 V
Total gate charge : 210 nC as per datasheet IRFP460
Rise time: 100 ns
[Q=I*t]
Current: 2.1 A
Gate resistor: V/I > 12/2.1 > 5.7 ohm
Peak power: I * I * R > 2.1 * 2.1 * 5.7 > 25.1370 W
Average power: [Peak Power/Frequency]: 25.1370/400000 > 0.0000628425 [Ws]
1 watt resistor is OK ?
resistors high-frequency
resistors high-frequency
edited 3 hours ago
Transistor
87.1k785189
87.1k785189
asked 4 hours ago
Israr SayedIsrar Sayed
204
204
$begingroup$
Dividing peak power by frequency doesn't make sense to me. As you say, the units are watt-seconds, not watts.
$endgroup$
– Elliot Alderson
3 hours ago
add a comment |
$begingroup$
Dividing peak power by frequency doesn't make sense to me. As you say, the units are watt-seconds, not watts.
$endgroup$
– Elliot Alderson
3 hours ago
$begingroup$
Dividing peak power by frequency doesn't make sense to me. As you say, the units are watt-seconds, not watts.
$endgroup$
– Elliot Alderson
3 hours ago
$begingroup$
Dividing peak power by frequency doesn't make sense to me. As you say, the units are watt-seconds, not watts.
$endgroup$
– Elliot Alderson
3 hours ago
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Dividing the peak power by the frequency is not useful.
Instead, you would multiply it by the duty cycle. If you're dumping 25 W of power into the resistor for 2 × 100 ns out of every 2.5 µs. This would be an average power of
$$25 W cdotfrac{2 cdot 100 ns}{2.5 mu s} = 2 W$$
Clearly, your 1W resistor is not going to cut it!
However, the peak instantaneous power is not really a good estimate of the average power during the switching transient. A better estimate can be arrived at by considering the energy flow into and out of the gate capacitance.
For an R-C circuit, the energy dissipated in the resistor is basically equal to the energy that ends up on the capacitor. If your gate charge is 210 nC and your gate voltage is 12V, this represents
$$Energy = frac{1}{2}cdot Charge cdot Voltage$$
$$0.5 cdot 210 nC cdot 12 V = 1.26 mu J$$
This is the energy you're dumping into the gate capacitance, and then dumping out again on every switching cycle. All of this energy gets dissipated in the gate resistor.
To get the average power, multiply the energy per cycle by the number of cycles per second, giving
$$1.26 mu J cdot 2 cdot 400 kHz = 1.088 W$$
Your 1W resistor would be running at its limit, with no margin. I would use a 2W resistor here.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["\$", "\$"]]);
});
});
}, "mathjax-editing");
StackExchange.ifUsing("editor", function () {
return StackExchange.using("schematics", function () {
StackExchange.schematics.init();
});
}, "cicuitlab");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "135"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2felectronics.stackexchange.com%2fquestions%2f428730%2fcalculating-wattage-for-resistor-in-high-frequency-application%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Dividing the peak power by the frequency is not useful.
Instead, you would multiply it by the duty cycle. If you're dumping 25 W of power into the resistor for 2 × 100 ns out of every 2.5 µs. This would be an average power of
$$25 W cdotfrac{2 cdot 100 ns}{2.5 mu s} = 2 W$$
Clearly, your 1W resistor is not going to cut it!
However, the peak instantaneous power is not really a good estimate of the average power during the switching transient. A better estimate can be arrived at by considering the energy flow into and out of the gate capacitance.
For an R-C circuit, the energy dissipated in the resistor is basically equal to the energy that ends up on the capacitor. If your gate charge is 210 nC and your gate voltage is 12V, this represents
$$Energy = frac{1}{2}cdot Charge cdot Voltage$$
$$0.5 cdot 210 nC cdot 12 V = 1.26 mu J$$
This is the energy you're dumping into the gate capacitance, and then dumping out again on every switching cycle. All of this energy gets dissipated in the gate resistor.
To get the average power, multiply the energy per cycle by the number of cycles per second, giving
$$1.26 mu J cdot 2 cdot 400 kHz = 1.088 W$$
Your 1W resistor would be running at its limit, with no margin. I would use a 2W resistor here.
$endgroup$
add a comment |
$begingroup$
Dividing the peak power by the frequency is not useful.
Instead, you would multiply it by the duty cycle. If you're dumping 25 W of power into the resistor for 2 × 100 ns out of every 2.5 µs. This would be an average power of
$$25 W cdotfrac{2 cdot 100 ns}{2.5 mu s} = 2 W$$
Clearly, your 1W resistor is not going to cut it!
However, the peak instantaneous power is not really a good estimate of the average power during the switching transient. A better estimate can be arrived at by considering the energy flow into and out of the gate capacitance.
For an R-C circuit, the energy dissipated in the resistor is basically equal to the energy that ends up on the capacitor. If your gate charge is 210 nC and your gate voltage is 12V, this represents
$$Energy = frac{1}{2}cdot Charge cdot Voltage$$
$$0.5 cdot 210 nC cdot 12 V = 1.26 mu J$$
This is the energy you're dumping into the gate capacitance, and then dumping out again on every switching cycle. All of this energy gets dissipated in the gate resistor.
To get the average power, multiply the energy per cycle by the number of cycles per second, giving
$$1.26 mu J cdot 2 cdot 400 kHz = 1.088 W$$
Your 1W resistor would be running at its limit, with no margin. I would use a 2W resistor here.
$endgroup$
add a comment |
$begingroup$
Dividing the peak power by the frequency is not useful.
Instead, you would multiply it by the duty cycle. If you're dumping 25 W of power into the resistor for 2 × 100 ns out of every 2.5 µs. This would be an average power of
$$25 W cdotfrac{2 cdot 100 ns}{2.5 mu s} = 2 W$$
Clearly, your 1W resistor is not going to cut it!
However, the peak instantaneous power is not really a good estimate of the average power during the switching transient. A better estimate can be arrived at by considering the energy flow into and out of the gate capacitance.
For an R-C circuit, the energy dissipated in the resistor is basically equal to the energy that ends up on the capacitor. If your gate charge is 210 nC and your gate voltage is 12V, this represents
$$Energy = frac{1}{2}cdot Charge cdot Voltage$$
$$0.5 cdot 210 nC cdot 12 V = 1.26 mu J$$
This is the energy you're dumping into the gate capacitance, and then dumping out again on every switching cycle. All of this energy gets dissipated in the gate resistor.
To get the average power, multiply the energy per cycle by the number of cycles per second, giving
$$1.26 mu J cdot 2 cdot 400 kHz = 1.088 W$$
Your 1W resistor would be running at its limit, with no margin. I would use a 2W resistor here.
$endgroup$
Dividing the peak power by the frequency is not useful.
Instead, you would multiply it by the duty cycle. If you're dumping 25 W of power into the resistor for 2 × 100 ns out of every 2.5 µs. This would be an average power of
$$25 W cdotfrac{2 cdot 100 ns}{2.5 mu s} = 2 W$$
Clearly, your 1W resistor is not going to cut it!
However, the peak instantaneous power is not really a good estimate of the average power during the switching transient. A better estimate can be arrived at by considering the energy flow into and out of the gate capacitance.
For an R-C circuit, the energy dissipated in the resistor is basically equal to the energy that ends up on the capacitor. If your gate charge is 210 nC and your gate voltage is 12V, this represents
$$Energy = frac{1}{2}cdot Charge cdot Voltage$$
$$0.5 cdot 210 nC cdot 12 V = 1.26 mu J$$
This is the energy you're dumping into the gate capacitance, and then dumping out again on every switching cycle. All of this energy gets dissipated in the gate resistor.
To get the average power, multiply the energy per cycle by the number of cycles per second, giving
$$1.26 mu J cdot 2 cdot 400 kHz = 1.088 W$$
Your 1W resistor would be running at its limit, with no margin. I would use a 2W resistor here.
edited 2 hours ago
answered 3 hours ago
Dave Tweed♦Dave Tweed
122k9152263
122k9152263
add a comment |
add a comment |
Thanks for contributing an answer to Electrical Engineering Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2felectronics.stackexchange.com%2fquestions%2f428730%2fcalculating-wattage-for-resistor-in-high-frequency-application%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Dividing peak power by frequency doesn't make sense to me. As you say, the units are watt-seconds, not watts.
$endgroup$
– Elliot Alderson
3 hours ago