Existing of non-intersecting raysConstructing a circle through a point in the interior of an angleHow many...

Is it possible to have a strip of cold climate in the middle of a planet?

Did Swami Prabhupada reject Advaita?

Why should universal income be universal?

What does routing an IP address mean?

Can I sign legal documents with a smiley face?

Fear of getting stuck on one programming language / technology that is not used in my country

Should I stop contributing to retirement accounts?

What if a revenant (monster) gains fire resistance?

How to indicate a cut out for a product window

When were female captains banned from Starfleet?

Existing of non-intersecting rays

"Spoil" vs "Ruin"

Melting point of aspirin, contradicting sources

How much character growth crosses the line into breaking the character

What is Cash Advance APR?

why `nmap 192.168.1.97` returns less services than `nmap 127.0.0.1`?

If a character has darkvision, can they see through an area of nonmagical darkness filled with lightly obscuring gas?

What does chmod -u do?

What is this called? Old film camera viewer?

Is it improper etiquette to ask your opponent what his/her rating is before the game?

What should you do when eye contact makes your subordinate uncomfortable?

Does a 'pending' US visa application constitute a denial?

Store Credit Card Information in Password Manager?

How can Trident be so inexpensive? Will it orbit Triton or just do a (slow) flyby?



Existing of non-intersecting rays


Constructing a circle through a point in the interior of an angleHow many rays can made from $4$ collinear points?Angle between different rays (3d line segments) and computing their angular relationshipsIntersecting three rays and a sphere of known radiusDesigning a distance function between raysLines between point and sphere surface intersecting a planeIntersecting planes stereometry problemIs a single line, line segment, or ray a valid angle?Coxeter, Introduction to Geometry, ordered geometry, parallelism of rays and linesNon-congruent angle of an isosceles triangle













2












$begingroup$


Given $n$ points on a plane, it seems intuitive that it’s possible to draw a ray (half-line) from each point s. t. the $n$ rays do not intersect.



But how to prove this?










share|cite|improve this question









$endgroup$

















    2












    $begingroup$


    Given $n$ points on a plane, it seems intuitive that it’s possible to draw a ray (half-line) from each point s. t. the $n$ rays do not intersect.



    But how to prove this?










    share|cite|improve this question









    $endgroup$















      2












      2








      2


      1



      $begingroup$


      Given $n$ points on a plane, it seems intuitive that it’s possible to draw a ray (half-line) from each point s. t. the $n$ rays do not intersect.



      But how to prove this?










      share|cite|improve this question









      $endgroup$




      Given $n$ points on a plane, it seems intuitive that it’s possible to draw a ray (half-line) from each point s. t. the $n$ rays do not intersect.



      But how to prove this?







      geometry






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked 24 mins ago









      athosathos

      98611340




      98611340






















          1 Answer
          1






          active

          oldest

          votes


















          2












          $begingroup$

          Pick any point $P$ in the plane that is not on a line containing two or more of the given $n$ points. At each point, draw the ray in the direction away from $P$.



          One can in fact do better: It is possible to draw lines through all $n$ points that do not intersect. Choose an orientation that is not parallel to any of the lines between any two of the given points, and draw parallel lines in that orientation through each point.






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            +1 for being slightly faster than me :)
            $endgroup$
            – Severin Schraven
            12 mins ago










          • $begingroup$
            Thx ! This is a “oh of course “ moment of me
            $endgroup$
            – athos
            11 mins ago











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3160029%2fexisting-of-non-intersecting-rays%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          2












          $begingroup$

          Pick any point $P$ in the plane that is not on a line containing two or more of the given $n$ points. At each point, draw the ray in the direction away from $P$.



          One can in fact do better: It is possible to draw lines through all $n$ points that do not intersect. Choose an orientation that is not parallel to any of the lines between any two of the given points, and draw parallel lines in that orientation through each point.






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            +1 for being slightly faster than me :)
            $endgroup$
            – Severin Schraven
            12 mins ago










          • $begingroup$
            Thx ! This is a “oh of course “ moment of me
            $endgroup$
            – athos
            11 mins ago
















          2












          $begingroup$

          Pick any point $P$ in the plane that is not on a line containing two or more of the given $n$ points. At each point, draw the ray in the direction away from $P$.



          One can in fact do better: It is possible to draw lines through all $n$ points that do not intersect. Choose an orientation that is not parallel to any of the lines between any two of the given points, and draw parallel lines in that orientation through each point.






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            +1 for being slightly faster than me :)
            $endgroup$
            – Severin Schraven
            12 mins ago










          • $begingroup$
            Thx ! This is a “oh of course “ moment of me
            $endgroup$
            – athos
            11 mins ago














          2












          2








          2





          $begingroup$

          Pick any point $P$ in the plane that is not on a line containing two or more of the given $n$ points. At each point, draw the ray in the direction away from $P$.



          One can in fact do better: It is possible to draw lines through all $n$ points that do not intersect. Choose an orientation that is not parallel to any of the lines between any two of the given points, and draw parallel lines in that orientation through each point.






          share|cite|improve this answer











          $endgroup$



          Pick any point $P$ in the plane that is not on a line containing two or more of the given $n$ points. At each point, draw the ray in the direction away from $P$.



          One can in fact do better: It is possible to draw lines through all $n$ points that do not intersect. Choose an orientation that is not parallel to any of the lines between any two of the given points, and draw parallel lines in that orientation through each point.







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited 7 mins ago

























          answered 13 mins ago









          FredHFredH

          2,6041021




          2,6041021












          • $begingroup$
            +1 for being slightly faster than me :)
            $endgroup$
            – Severin Schraven
            12 mins ago










          • $begingroup$
            Thx ! This is a “oh of course “ moment of me
            $endgroup$
            – athos
            11 mins ago


















          • $begingroup$
            +1 for being slightly faster than me :)
            $endgroup$
            – Severin Schraven
            12 mins ago










          • $begingroup$
            Thx ! This is a “oh of course “ moment of me
            $endgroup$
            – athos
            11 mins ago
















          $begingroup$
          +1 for being slightly faster than me :)
          $endgroup$
          – Severin Schraven
          12 mins ago




          $begingroup$
          +1 for being slightly faster than me :)
          $endgroup$
          – Severin Schraven
          12 mins ago












          $begingroup$
          Thx ! This is a “oh of course “ moment of me
          $endgroup$
          – athos
          11 mins ago




          $begingroup$
          Thx ! This is a “oh of course “ moment of me
          $endgroup$
          – athos
          11 mins ago


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3160029%2fexisting-of-non-intersecting-rays%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          El tren de la libertad Índice Antecedentes "Porque yo decido" Desarrollo de la...

          Castillo d'Acher Características Menú de navegación

          miktex-makemf did not succeed for the following reasonHow to fix the “Sorry, but C:…miktex-pdftex.exe did...