Notation for two qubit composite product state Planned maintenance scheduled April 17/18, 2019...
Complexity of many constant time steps with occasional logarithmic steps
What can I do if my MacBook isn’t charging but already ran out?
Can smartphones with the same camera sensor have different image quality?
Why use gamma over alpha radiation?
Strange behaviour of Check
Can a zero nonce be safely used with AES-GCM if the key is random and never used again?
What do you call a plan that's an alternative plan in case your initial plan fails?
What was the last x86 CPU that did not have the x87 floating-point unit built in?
Slither Like a Snake
Can the prologue be the backstory of your main character?
How do I keep my slimes from escaping their pens?
How can players take actions together that are impossible otherwise?
Classification of bundles, Postnikov towers, obstruction theory, local coefficients
Using "nakedly" instead of "with nothing on"
Need a suitable toxic chemical for a murder plot in my novel
Should you tell Jews they are breaking a commandment?
Geometric mean and geometric standard deviation
What LEGO pieces have "real-world" functionality?
Typeface like Times New Roman but with "tied" percent sign
Determine whether f is a function, an injection, a surjection
Unable to start mainnet node docker container
What do you call the holes in a flute?
Did the new image of black hole confirm the general theory of relativity?
Do we know why communications with Beresheet and NASA were lost during the attempted landing of the Moon lander?
Notation for two qubit composite product state
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)
Announcing the arrival of Valued Associate #679: Cesar Manara
Unicorn Meta Zoo #1: Why another podcast?Compute average value of two-qubit systemWhat can I deduce about $f(x)$ if $f$ is balanced or constant?What does the notation $lvert underline{x} rangle$ mean?How do I show that a two-qubit state is an entangled state?How is a single qubit fundamentally different from a classical coin spinning in the air?Why is the state of multiple qubits given by their tensor product?Notation for two entangled registersA question about notation for quantum statesA two qubit state in a special formConcurrence for a two qubit state
.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty{ margin-bottom:0;
}
$begingroup$
In my lecture notes on quantum information processing my lecturer gives an example of composite systems as $|phirangle=|0rangle |0rangle=|00rangle$. I understand that if we have two qubits then its product state will be in 2n dimensional Hilbert space and I understand the 2 qubit state $|00rangle$ to be represented in matrix representation as $begin{pmatrix} 1 & 1 \ 0 & 0 end{pmatrix}$ (if that is wrong please do correct my misunderstanding though). My question is about the notation $|0rangle|0rangle=|00rangle$, how can we calculate this with matrices on the left-hand side we have a 2 by 1 matrix multiplied by a 2 by 1 matrix which cannot be calculated. I thought perhaps it was a matter of direct products but my calculation led to an incorrect result there too.
Could anyone clarify this for me, please?
Edit: It occurred to me that I think I'm mistaken about the matrix representation of $|00rangle$, I think it would make more sense to be $begin{pmatrix} 1 \ 0\0\0 end{pmatrix}$ in which case the direct product does work and I should take the notation $|0rangle|0rangle$ to be a shorthand for the direct product not the multiplication of two matrices, is that correct?
quantum-state tensor-product notation
New contributor
$endgroup$
add a comment |
$begingroup$
In my lecture notes on quantum information processing my lecturer gives an example of composite systems as $|phirangle=|0rangle |0rangle=|00rangle$. I understand that if we have two qubits then its product state will be in 2n dimensional Hilbert space and I understand the 2 qubit state $|00rangle$ to be represented in matrix representation as $begin{pmatrix} 1 & 1 \ 0 & 0 end{pmatrix}$ (if that is wrong please do correct my misunderstanding though). My question is about the notation $|0rangle|0rangle=|00rangle$, how can we calculate this with matrices on the left-hand side we have a 2 by 1 matrix multiplied by a 2 by 1 matrix which cannot be calculated. I thought perhaps it was a matter of direct products but my calculation led to an incorrect result there too.
Could anyone clarify this for me, please?
Edit: It occurred to me that I think I'm mistaken about the matrix representation of $|00rangle$, I think it would make more sense to be $begin{pmatrix} 1 \ 0\0\0 end{pmatrix}$ in which case the direct product does work and I should take the notation $|0rangle|0rangle$ to be a shorthand for the direct product not the multiplication of two matrices, is that correct?
quantum-state tensor-product notation
New contributor
$endgroup$
add a comment |
$begingroup$
In my lecture notes on quantum information processing my lecturer gives an example of composite systems as $|phirangle=|0rangle |0rangle=|00rangle$. I understand that if we have two qubits then its product state will be in 2n dimensional Hilbert space and I understand the 2 qubit state $|00rangle$ to be represented in matrix representation as $begin{pmatrix} 1 & 1 \ 0 & 0 end{pmatrix}$ (if that is wrong please do correct my misunderstanding though). My question is about the notation $|0rangle|0rangle=|00rangle$, how can we calculate this with matrices on the left-hand side we have a 2 by 1 matrix multiplied by a 2 by 1 matrix which cannot be calculated. I thought perhaps it was a matter of direct products but my calculation led to an incorrect result there too.
Could anyone clarify this for me, please?
Edit: It occurred to me that I think I'm mistaken about the matrix representation of $|00rangle$, I think it would make more sense to be $begin{pmatrix} 1 \ 0\0\0 end{pmatrix}$ in which case the direct product does work and I should take the notation $|0rangle|0rangle$ to be a shorthand for the direct product not the multiplication of two matrices, is that correct?
quantum-state tensor-product notation
New contributor
$endgroup$
In my lecture notes on quantum information processing my lecturer gives an example of composite systems as $|phirangle=|0rangle |0rangle=|00rangle$. I understand that if we have two qubits then its product state will be in 2n dimensional Hilbert space and I understand the 2 qubit state $|00rangle$ to be represented in matrix representation as $begin{pmatrix} 1 & 1 \ 0 & 0 end{pmatrix}$ (if that is wrong please do correct my misunderstanding though). My question is about the notation $|0rangle|0rangle=|00rangle$, how can we calculate this with matrices on the left-hand side we have a 2 by 1 matrix multiplied by a 2 by 1 matrix which cannot be calculated. I thought perhaps it was a matter of direct products but my calculation led to an incorrect result there too.
Could anyone clarify this for me, please?
Edit: It occurred to me that I think I'm mistaken about the matrix representation of $|00rangle$, I think it would make more sense to be $begin{pmatrix} 1 \ 0\0\0 end{pmatrix}$ in which case the direct product does work and I should take the notation $|0rangle|0rangle$ to be a shorthand for the direct product not the multiplication of two matrices, is that correct?
quantum-state tensor-product notation
quantum-state tensor-product notation
New contributor
New contributor
edited 4 hours ago
Sanchayan Dutta♦
6,67641556
6,67641556
New contributor
asked 5 hours ago
can'tcauchycan'tcauchy
1185
1185
New contributor
New contributor
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
$|0rangle|0rangle$ is actually a shorthand for $|0rangle otimes |0rangle$ or $begin{bmatrix} 1 \ 0 end{bmatrix} otimes begin{bmatrix} 1 \ 0end{bmatrix} $ where $otimes$ stands for the tensor product or essentially the Kronecker product. To quote Wikipedia:
In mathematics, the Kronecker product, denoted by $otimes$, is an operation
on two matrices of arbitrary size resulting in a block matrix. It is a
generalization of the outer product (which is denoted by the same
symbol) from vectors to matrices, and gives the matrix of the tensor
product with respect to a standard choice of basis. The Kronecker
product should not be confused with the usual matrix multiplication,
which is an entirely different operation.
Now the standard choice of basis for a two-qubit system is:
${|00rangle = begin{bmatrix} 1 \ 0 \ 0 \ 0 end{bmatrix}, |01rangle = begin{bmatrix} 0 \ 1 \ 0 \ 0 end{bmatrix}, |10rangle = begin{bmatrix} 0 \ 0 \ 1 \ 0 end{bmatrix}, |11rangle = begin{bmatrix} 0 \ 0 \ 0 \ 1 end{bmatrix}}$
If you wish, you can also represent the basis as (if you strictly take $otimes$ as the outer product):
${|00rangle = begin{bmatrix} 1 & 0 \ 0 & 0 end{bmatrix}, |01rangle = begin{bmatrix} 0 & 1 \ 0 & 0 end{bmatrix}, |10rangle = begin{bmatrix} 0 & 0 \ 1 & 0 end{bmatrix}, |11rangle = begin{bmatrix} 0 & 0 \ 0 & 1 end{bmatrix}}$
but then while carrying out calculations like determining the action of a quantum gate on a composite state you'd have to write the state using the vector representation (carefully read the linked Mathematics SE answer).
The key point here is that don't be bent on thinking of these linear algebraic operations in terms of matrices, but rather think in terms of linear maps. You'll get more comfortable with these things once you learn about tensors!
P.S: Kronecker product and outer product confusion
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "694"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
can'tcauchy is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fquantumcomputing.stackexchange.com%2fquestions%2f5911%2fnotation-for-two-qubit-composite-product-state%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$|0rangle|0rangle$ is actually a shorthand for $|0rangle otimes |0rangle$ or $begin{bmatrix} 1 \ 0 end{bmatrix} otimes begin{bmatrix} 1 \ 0end{bmatrix} $ where $otimes$ stands for the tensor product or essentially the Kronecker product. To quote Wikipedia:
In mathematics, the Kronecker product, denoted by $otimes$, is an operation
on two matrices of arbitrary size resulting in a block matrix. It is a
generalization of the outer product (which is denoted by the same
symbol) from vectors to matrices, and gives the matrix of the tensor
product with respect to a standard choice of basis. The Kronecker
product should not be confused with the usual matrix multiplication,
which is an entirely different operation.
Now the standard choice of basis for a two-qubit system is:
${|00rangle = begin{bmatrix} 1 \ 0 \ 0 \ 0 end{bmatrix}, |01rangle = begin{bmatrix} 0 \ 1 \ 0 \ 0 end{bmatrix}, |10rangle = begin{bmatrix} 0 \ 0 \ 1 \ 0 end{bmatrix}, |11rangle = begin{bmatrix} 0 \ 0 \ 0 \ 1 end{bmatrix}}$
If you wish, you can also represent the basis as (if you strictly take $otimes$ as the outer product):
${|00rangle = begin{bmatrix} 1 & 0 \ 0 & 0 end{bmatrix}, |01rangle = begin{bmatrix} 0 & 1 \ 0 & 0 end{bmatrix}, |10rangle = begin{bmatrix} 0 & 0 \ 1 & 0 end{bmatrix}, |11rangle = begin{bmatrix} 0 & 0 \ 0 & 1 end{bmatrix}}$
but then while carrying out calculations like determining the action of a quantum gate on a composite state you'd have to write the state using the vector representation (carefully read the linked Mathematics SE answer).
The key point here is that don't be bent on thinking of these linear algebraic operations in terms of matrices, but rather think in terms of linear maps. You'll get more comfortable with these things once you learn about tensors!
P.S: Kronecker product and outer product confusion
$endgroup$
add a comment |
$begingroup$
$|0rangle|0rangle$ is actually a shorthand for $|0rangle otimes |0rangle$ or $begin{bmatrix} 1 \ 0 end{bmatrix} otimes begin{bmatrix} 1 \ 0end{bmatrix} $ where $otimes$ stands for the tensor product or essentially the Kronecker product. To quote Wikipedia:
In mathematics, the Kronecker product, denoted by $otimes$, is an operation
on two matrices of arbitrary size resulting in a block matrix. It is a
generalization of the outer product (which is denoted by the same
symbol) from vectors to matrices, and gives the matrix of the tensor
product with respect to a standard choice of basis. The Kronecker
product should not be confused with the usual matrix multiplication,
which is an entirely different operation.
Now the standard choice of basis for a two-qubit system is:
${|00rangle = begin{bmatrix} 1 \ 0 \ 0 \ 0 end{bmatrix}, |01rangle = begin{bmatrix} 0 \ 1 \ 0 \ 0 end{bmatrix}, |10rangle = begin{bmatrix} 0 \ 0 \ 1 \ 0 end{bmatrix}, |11rangle = begin{bmatrix} 0 \ 0 \ 0 \ 1 end{bmatrix}}$
If you wish, you can also represent the basis as (if you strictly take $otimes$ as the outer product):
${|00rangle = begin{bmatrix} 1 & 0 \ 0 & 0 end{bmatrix}, |01rangle = begin{bmatrix} 0 & 1 \ 0 & 0 end{bmatrix}, |10rangle = begin{bmatrix} 0 & 0 \ 1 & 0 end{bmatrix}, |11rangle = begin{bmatrix} 0 & 0 \ 0 & 1 end{bmatrix}}$
but then while carrying out calculations like determining the action of a quantum gate on a composite state you'd have to write the state using the vector representation (carefully read the linked Mathematics SE answer).
The key point here is that don't be bent on thinking of these linear algebraic operations in terms of matrices, but rather think in terms of linear maps. You'll get more comfortable with these things once you learn about tensors!
P.S: Kronecker product and outer product confusion
$endgroup$
add a comment |
$begingroup$
$|0rangle|0rangle$ is actually a shorthand for $|0rangle otimes |0rangle$ or $begin{bmatrix} 1 \ 0 end{bmatrix} otimes begin{bmatrix} 1 \ 0end{bmatrix} $ where $otimes$ stands for the tensor product or essentially the Kronecker product. To quote Wikipedia:
In mathematics, the Kronecker product, denoted by $otimes$, is an operation
on two matrices of arbitrary size resulting in a block matrix. It is a
generalization of the outer product (which is denoted by the same
symbol) from vectors to matrices, and gives the matrix of the tensor
product with respect to a standard choice of basis. The Kronecker
product should not be confused with the usual matrix multiplication,
which is an entirely different operation.
Now the standard choice of basis for a two-qubit system is:
${|00rangle = begin{bmatrix} 1 \ 0 \ 0 \ 0 end{bmatrix}, |01rangle = begin{bmatrix} 0 \ 1 \ 0 \ 0 end{bmatrix}, |10rangle = begin{bmatrix} 0 \ 0 \ 1 \ 0 end{bmatrix}, |11rangle = begin{bmatrix} 0 \ 0 \ 0 \ 1 end{bmatrix}}$
If you wish, you can also represent the basis as (if you strictly take $otimes$ as the outer product):
${|00rangle = begin{bmatrix} 1 & 0 \ 0 & 0 end{bmatrix}, |01rangle = begin{bmatrix} 0 & 1 \ 0 & 0 end{bmatrix}, |10rangle = begin{bmatrix} 0 & 0 \ 1 & 0 end{bmatrix}, |11rangle = begin{bmatrix} 0 & 0 \ 0 & 1 end{bmatrix}}$
but then while carrying out calculations like determining the action of a quantum gate on a composite state you'd have to write the state using the vector representation (carefully read the linked Mathematics SE answer).
The key point here is that don't be bent on thinking of these linear algebraic operations in terms of matrices, but rather think in terms of linear maps. You'll get more comfortable with these things once you learn about tensors!
P.S: Kronecker product and outer product confusion
$endgroup$
$|0rangle|0rangle$ is actually a shorthand for $|0rangle otimes |0rangle$ or $begin{bmatrix} 1 \ 0 end{bmatrix} otimes begin{bmatrix} 1 \ 0end{bmatrix} $ where $otimes$ stands for the tensor product or essentially the Kronecker product. To quote Wikipedia:
In mathematics, the Kronecker product, denoted by $otimes$, is an operation
on two matrices of arbitrary size resulting in a block matrix. It is a
generalization of the outer product (which is denoted by the same
symbol) from vectors to matrices, and gives the matrix of the tensor
product with respect to a standard choice of basis. The Kronecker
product should not be confused with the usual matrix multiplication,
which is an entirely different operation.
Now the standard choice of basis for a two-qubit system is:
${|00rangle = begin{bmatrix} 1 \ 0 \ 0 \ 0 end{bmatrix}, |01rangle = begin{bmatrix} 0 \ 1 \ 0 \ 0 end{bmatrix}, |10rangle = begin{bmatrix} 0 \ 0 \ 1 \ 0 end{bmatrix}, |11rangle = begin{bmatrix} 0 \ 0 \ 0 \ 1 end{bmatrix}}$
If you wish, you can also represent the basis as (if you strictly take $otimes$ as the outer product):
${|00rangle = begin{bmatrix} 1 & 0 \ 0 & 0 end{bmatrix}, |01rangle = begin{bmatrix} 0 & 1 \ 0 & 0 end{bmatrix}, |10rangle = begin{bmatrix} 0 & 0 \ 1 & 0 end{bmatrix}, |11rangle = begin{bmatrix} 0 & 0 \ 0 & 1 end{bmatrix}}$
but then while carrying out calculations like determining the action of a quantum gate on a composite state you'd have to write the state using the vector representation (carefully read the linked Mathematics SE answer).
The key point here is that don't be bent on thinking of these linear algebraic operations in terms of matrices, but rather think in terms of linear maps. You'll get more comfortable with these things once you learn about tensors!
P.S: Kronecker product and outer product confusion
edited 4 hours ago
answered 5 hours ago
Sanchayan Dutta♦Sanchayan Dutta
6,67641556
6,67641556
add a comment |
add a comment |
can'tcauchy is a new contributor. Be nice, and check out our Code of Conduct.
can'tcauchy is a new contributor. Be nice, and check out our Code of Conduct.
can'tcauchy is a new contributor. Be nice, and check out our Code of Conduct.
can'tcauchy is a new contributor. Be nice, and check out our Code of Conduct.
Thanks for contributing an answer to Quantum Computing Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fquantumcomputing.stackexchange.com%2fquestions%2f5911%2fnotation-for-two-qubit-composite-product-state%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown