Solving polynominals equations (relationship of roots)Quadratic equation - $alpha$ and $beta$ RootsTechnique...
Should the Death Curse affect an undead PC in the Tomb of Annihilation adventure?
Get consecutive integer number ranges from list of int
Partitioning the Reals into two Locally Uncountable, Dense Sets
Minor Revision with suggestion of an alternative proof by reviewer
How exactly does Hawking radiation decrease the mass of black holes?
"The cow" OR "a cow" OR "cows" in this context
Why does Mind Blank stop the Feeblemind spell?
Alignment of various blocks in tikz
Can SQL Server create collisions in system generated constraint names?
How can Republicans who favour free markets, consistently express anger when they don't like the outcome of that choice?
Why was the Spitfire's elliptical wing almost uncopied by other aircraft of World War 2?
Do I have an "anti-research" personality?
What makes accurate emulation of old systems a difficult task?
How did Captain America manage to do this?
Does tea made with boiling water cool faster than tea made with boiled (but still hot) water?
Does a large simulator bay have standard public address announcements?
Check if a string is entirely made of the same substring
How to fry ground beef so it is well-browned
A strange hotel
Critique of timeline aesthetic
I preordered a game on my Xbox while on the home screen of my friend's account. Which of us owns the game?
Size of electromagnet needed to replicate Earth's magnetic field
Phrase for the opposite of "foolproof"
How do I check if a string is entirely made of the same substring?
Solving polynominals equations (relationship of roots)
Quadratic equation - $alpha$ and $beta$ RootsTechnique to simplify algebraic calculations on roots of polynomialInterval of Polynomial Root FindingFind $alpha^3 + beta^3$ which are roots of a quadratic equation.sum and product of roots of polynomials: finding equations for rootsSolving two Cubic Equation on their Roots.Finding an equation with related rootsFind the roots of $acx^2-b(c+a)x+(c+a)^2=0$If $3x^2-6x+p=0$ has roots $alpha$ and $beta$, then find a quadratic with roots $(alpha+beta)/alpha$ and $(alpha+beta)/beta$Find the roots of $3x^3-4x-8$
$begingroup$
The roots of $x^3-4x^2+x+6$ are $alpha$, $beta$, and $omega$.
Find (evaluate):
$$frac{alpha+beta}{omega}+frac{alpha+omega}{beta}+frac{beta+omega}{alpha}$$
So far I have found:
$$alpha+beta+omega=frac{-b}{a} = 4 \
alphabeta+betaomega+alphaomega=frac{c}{a} = 1 \
alpha×beta×omega=frac{-d}{a} = -6$$
And evaluated the above fractions creating
$$frac{alpha^2beta+alphabeta^2+alpha^2omega+alphaomega^2+beta^2omega+betaomega^2}{alphabetaomega}$$
I don't know how to continue evaluating the question.
Note:
The answer I have been given is $-dfrac{11}{3}$
polynomials roots
$endgroup$
add a comment |
$begingroup$
The roots of $x^3-4x^2+x+6$ are $alpha$, $beta$, and $omega$.
Find (evaluate):
$$frac{alpha+beta}{omega}+frac{alpha+omega}{beta}+frac{beta+omega}{alpha}$$
So far I have found:
$$alpha+beta+omega=frac{-b}{a} = 4 \
alphabeta+betaomega+alphaomega=frac{c}{a} = 1 \
alpha×beta×omega=frac{-d}{a} = -6$$
And evaluated the above fractions creating
$$frac{alpha^2beta+alphabeta^2+alpha^2omega+alphaomega^2+beta^2omega+betaomega^2}{alphabetaomega}$$
I don't know how to continue evaluating the question.
Note:
The answer I have been given is $-dfrac{11}{3}$
polynomials roots
$endgroup$
1
$begingroup$
For latex, you use instead of /.
$endgroup$
– BadAtGeometry
1 hour ago
add a comment |
$begingroup$
The roots of $x^3-4x^2+x+6$ are $alpha$, $beta$, and $omega$.
Find (evaluate):
$$frac{alpha+beta}{omega}+frac{alpha+omega}{beta}+frac{beta+omega}{alpha}$$
So far I have found:
$$alpha+beta+omega=frac{-b}{a} = 4 \
alphabeta+betaomega+alphaomega=frac{c}{a} = 1 \
alpha×beta×omega=frac{-d}{a} = -6$$
And evaluated the above fractions creating
$$frac{alpha^2beta+alphabeta^2+alpha^2omega+alphaomega^2+beta^2omega+betaomega^2}{alphabetaomega}$$
I don't know how to continue evaluating the question.
Note:
The answer I have been given is $-dfrac{11}{3}$
polynomials roots
$endgroup$
The roots of $x^3-4x^2+x+6$ are $alpha$, $beta$, and $omega$.
Find (evaluate):
$$frac{alpha+beta}{omega}+frac{alpha+omega}{beta}+frac{beta+omega}{alpha}$$
So far I have found:
$$alpha+beta+omega=frac{-b}{a} = 4 \
alphabeta+betaomega+alphaomega=frac{c}{a} = 1 \
alpha×beta×omega=frac{-d}{a} = -6$$
And evaluated the above fractions creating
$$frac{alpha^2beta+alphabeta^2+alpha^2omega+alphaomega^2+beta^2omega+betaomega^2}{alphabetaomega}$$
I don't know how to continue evaluating the question.
Note:
The answer I have been given is $-dfrac{11}{3}$
polynomials roots
polynomials roots
edited 34 mins ago
Lee David Chung Lin
4,51851342
4,51851342
asked 1 hour ago
Alex Alex
186
186
1
$begingroup$
For latex, you use instead of /.
$endgroup$
– BadAtGeometry
1 hour ago
add a comment |
1
$begingroup$
For latex, you use instead of /.
$endgroup$
– BadAtGeometry
1 hour ago
1
1
$begingroup$
For latex, you use instead of /.
$endgroup$
– BadAtGeometry
1 hour ago
$begingroup$
For latex, you use instead of /.
$endgroup$
– BadAtGeometry
1 hour ago
add a comment |
4 Answers
4
active
oldest
votes
$begingroup$
$$frac{alpha + beta}{omega} + frac{beta + omega}{alpha} + frac{alpha + omega}{beta}$$
$$= frac{alpha + beta + omega - omega}{omega} + frac{beta + omega + alpha - alpha}{alpha} + frac{alpha + omega + beta - beta}{beta}$$
$$ = (alpha + beta + omega) left(frac{1}{alpha} + frac{1}{beta} + frac{1}{omega}right) - 3$$
$$ = (alpha + beta + omega) left(frac{betaomega}{alphabetaomega} + frac{alphaomega}{alphabetaomega} + frac{alphabeta}{alphabetaomega}right) - 3$$
$$ = frac{alpha + beta + omega}{alphabetaomega}(betaomega + alphaomega + alphabeta) - 3$$
I think you should be able to take it from there.
$endgroup$
add a comment |
$begingroup$
Hint: We can write $$frac{4-w}{w}+frac{4-beta}{beta}+frac{4-alpha}{alpha}$$ and this is $$4left(frac{alphabeta+alpha w+wbeta}{alpha beta w}right)-3$$ and this is $$-frac{2}{3}left(1-beta w-alpha w+alpha w+beta wright)$$
This simplifies to $$-frac{2}{3}-3=-frac{11}{3}$$
$endgroup$
add a comment |
$begingroup$
That follows from your results, since we get: $dfrac{4-omega}{omega}+dfrac{4-beta}{beta}+dfrac{4-alpha}{alpha}=dfrac{4(omegabeta+omega alpha+betaalpha)-3omegabetaalpha}{omega beta alpha}=dfrac{4+18}{-6}=-dfrac{11}3$.
$endgroup$
add a comment |
$begingroup$
Alternatively, you can solve the equation:
$$x^3-4x^2+x+6=0 Rightarrow (x+1)(x-2)(x-3)=0 Rightarrow \
alpha =-1, beta =2,omega=3.$$
Hence:
$$frac{alpha + beta}{omega} + frac{beta + omega}{alpha} + frac{alpha + omega}{beta}=\
frac{-1+ 2}{3} + frac{2 + 3}{-1} + frac{-1 + 3}{2}=\
frac13-5+1=\
-frac{11}{3}.$$
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3204072%2fsolving-polynominals-equations-relationship-of-roots%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$$frac{alpha + beta}{omega} + frac{beta + omega}{alpha} + frac{alpha + omega}{beta}$$
$$= frac{alpha + beta + omega - omega}{omega} + frac{beta + omega + alpha - alpha}{alpha} + frac{alpha + omega + beta - beta}{beta}$$
$$ = (alpha + beta + omega) left(frac{1}{alpha} + frac{1}{beta} + frac{1}{omega}right) - 3$$
$$ = (alpha + beta + omega) left(frac{betaomega}{alphabetaomega} + frac{alphaomega}{alphabetaomega} + frac{alphabeta}{alphabetaomega}right) - 3$$
$$ = frac{alpha + beta + omega}{alphabetaomega}(betaomega + alphaomega + alphabeta) - 3$$
I think you should be able to take it from there.
$endgroup$
add a comment |
$begingroup$
$$frac{alpha + beta}{omega} + frac{beta + omega}{alpha} + frac{alpha + omega}{beta}$$
$$= frac{alpha + beta + omega - omega}{omega} + frac{beta + omega + alpha - alpha}{alpha} + frac{alpha + omega + beta - beta}{beta}$$
$$ = (alpha + beta + omega) left(frac{1}{alpha} + frac{1}{beta} + frac{1}{omega}right) - 3$$
$$ = (alpha + beta + omega) left(frac{betaomega}{alphabetaomega} + frac{alphaomega}{alphabetaomega} + frac{alphabeta}{alphabetaomega}right) - 3$$
$$ = frac{alpha + beta + omega}{alphabetaomega}(betaomega + alphaomega + alphabeta) - 3$$
I think you should be able to take it from there.
$endgroup$
add a comment |
$begingroup$
$$frac{alpha + beta}{omega} + frac{beta + omega}{alpha} + frac{alpha + omega}{beta}$$
$$= frac{alpha + beta + omega - omega}{omega} + frac{beta + omega + alpha - alpha}{alpha} + frac{alpha + omega + beta - beta}{beta}$$
$$ = (alpha + beta + omega) left(frac{1}{alpha} + frac{1}{beta} + frac{1}{omega}right) - 3$$
$$ = (alpha + beta + omega) left(frac{betaomega}{alphabetaomega} + frac{alphaomega}{alphabetaomega} + frac{alphabeta}{alphabetaomega}right) - 3$$
$$ = frac{alpha + beta + omega}{alphabetaomega}(betaomega + alphaomega + alphabeta) - 3$$
I think you should be able to take it from there.
$endgroup$
$$frac{alpha + beta}{omega} + frac{beta + omega}{alpha} + frac{alpha + omega}{beta}$$
$$= frac{alpha + beta + omega - omega}{omega} + frac{beta + omega + alpha - alpha}{alpha} + frac{alpha + omega + beta - beta}{beta}$$
$$ = (alpha + beta + omega) left(frac{1}{alpha} + frac{1}{beta} + frac{1}{omega}right) - 3$$
$$ = (alpha + beta + omega) left(frac{betaomega}{alphabetaomega} + frac{alphaomega}{alphabetaomega} + frac{alphabeta}{alphabetaomega}right) - 3$$
$$ = frac{alpha + beta + omega}{alphabetaomega}(betaomega + alphaomega + alphabeta) - 3$$
I think you should be able to take it from there.
answered 1 hour ago
user1952500user1952500
1,5251016
1,5251016
add a comment |
add a comment |
$begingroup$
Hint: We can write $$frac{4-w}{w}+frac{4-beta}{beta}+frac{4-alpha}{alpha}$$ and this is $$4left(frac{alphabeta+alpha w+wbeta}{alpha beta w}right)-3$$ and this is $$-frac{2}{3}left(1-beta w-alpha w+alpha w+beta wright)$$
This simplifies to $$-frac{2}{3}-3=-frac{11}{3}$$
$endgroup$
add a comment |
$begingroup$
Hint: We can write $$frac{4-w}{w}+frac{4-beta}{beta}+frac{4-alpha}{alpha}$$ and this is $$4left(frac{alphabeta+alpha w+wbeta}{alpha beta w}right)-3$$ and this is $$-frac{2}{3}left(1-beta w-alpha w+alpha w+beta wright)$$
This simplifies to $$-frac{2}{3}-3=-frac{11}{3}$$
$endgroup$
add a comment |
$begingroup$
Hint: We can write $$frac{4-w}{w}+frac{4-beta}{beta}+frac{4-alpha}{alpha}$$ and this is $$4left(frac{alphabeta+alpha w+wbeta}{alpha beta w}right)-3$$ and this is $$-frac{2}{3}left(1-beta w-alpha w+alpha w+beta wright)$$
This simplifies to $$-frac{2}{3}-3=-frac{11}{3}$$
$endgroup$
Hint: We can write $$frac{4-w}{w}+frac{4-beta}{beta}+frac{4-alpha}{alpha}$$ and this is $$4left(frac{alphabeta+alpha w+wbeta}{alpha beta w}right)-3$$ and this is $$-frac{2}{3}left(1-beta w-alpha w+alpha w+beta wright)$$
This simplifies to $$-frac{2}{3}-3=-frac{11}{3}$$
answered 1 hour ago
Dr. Sonnhard GraubnerDr. Sonnhard Graubner
79.7k42867
79.7k42867
add a comment |
add a comment |
$begingroup$
That follows from your results, since we get: $dfrac{4-omega}{omega}+dfrac{4-beta}{beta}+dfrac{4-alpha}{alpha}=dfrac{4(omegabeta+omega alpha+betaalpha)-3omegabetaalpha}{omega beta alpha}=dfrac{4+18}{-6}=-dfrac{11}3$.
$endgroup$
add a comment |
$begingroup$
That follows from your results, since we get: $dfrac{4-omega}{omega}+dfrac{4-beta}{beta}+dfrac{4-alpha}{alpha}=dfrac{4(omegabeta+omega alpha+betaalpha)-3omegabetaalpha}{omega beta alpha}=dfrac{4+18}{-6}=-dfrac{11}3$.
$endgroup$
add a comment |
$begingroup$
That follows from your results, since we get: $dfrac{4-omega}{omega}+dfrac{4-beta}{beta}+dfrac{4-alpha}{alpha}=dfrac{4(omegabeta+omega alpha+betaalpha)-3omegabetaalpha}{omega beta alpha}=dfrac{4+18}{-6}=-dfrac{11}3$.
$endgroup$
That follows from your results, since we get: $dfrac{4-omega}{omega}+dfrac{4-beta}{beta}+dfrac{4-alpha}{alpha}=dfrac{4(omegabeta+omega alpha+betaalpha)-3omegabetaalpha}{omega beta alpha}=dfrac{4+18}{-6}=-dfrac{11}3$.
answered 1 hour ago
Chris CusterChris Custer
14.7k3827
14.7k3827
add a comment |
add a comment |
$begingroup$
Alternatively, you can solve the equation:
$$x^3-4x^2+x+6=0 Rightarrow (x+1)(x-2)(x-3)=0 Rightarrow \
alpha =-1, beta =2,omega=3.$$
Hence:
$$frac{alpha + beta}{omega} + frac{beta + omega}{alpha} + frac{alpha + omega}{beta}=\
frac{-1+ 2}{3} + frac{2 + 3}{-1} + frac{-1 + 3}{2}=\
frac13-5+1=\
-frac{11}{3}.$$
$endgroup$
add a comment |
$begingroup$
Alternatively, you can solve the equation:
$$x^3-4x^2+x+6=0 Rightarrow (x+1)(x-2)(x-3)=0 Rightarrow \
alpha =-1, beta =2,omega=3.$$
Hence:
$$frac{alpha + beta}{omega} + frac{beta + omega}{alpha} + frac{alpha + omega}{beta}=\
frac{-1+ 2}{3} + frac{2 + 3}{-1} + frac{-1 + 3}{2}=\
frac13-5+1=\
-frac{11}{3}.$$
$endgroup$
add a comment |
$begingroup$
Alternatively, you can solve the equation:
$$x^3-4x^2+x+6=0 Rightarrow (x+1)(x-2)(x-3)=0 Rightarrow \
alpha =-1, beta =2,omega=3.$$
Hence:
$$frac{alpha + beta}{omega} + frac{beta + omega}{alpha} + frac{alpha + omega}{beta}=\
frac{-1+ 2}{3} + frac{2 + 3}{-1} + frac{-1 + 3}{2}=\
frac13-5+1=\
-frac{11}{3}.$$
$endgroup$
Alternatively, you can solve the equation:
$$x^3-4x^2+x+6=0 Rightarrow (x+1)(x-2)(x-3)=0 Rightarrow \
alpha =-1, beta =2,omega=3.$$
Hence:
$$frac{alpha + beta}{omega} + frac{beta + omega}{alpha} + frac{alpha + omega}{beta}=\
frac{-1+ 2}{3} + frac{2 + 3}{-1} + frac{-1 + 3}{2}=\
frac13-5+1=\
-frac{11}{3}.$$
answered 11 mins ago
farruhotafarruhota
22.5k2942
22.5k2942
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3204072%2fsolving-polynominals-equations-relationship-of-roots%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
For latex, you use instead of /.
$endgroup$
– BadAtGeometry
1 hour ago