Was is really necessary for the Lunar module LM to have 2 stages?How was reserve fuel calculated for the...

US visa is under administrative processing, I need the passport back ASAP

A Strange Latex Symbol

Does Gita support doctrine of eternal samsara?

Why does processed meat contain preservatives, while canned fish needs not?

Why does nature favour the Laplacian?

Phrase for the opposite of "foolproof"

Unexpected email from Yorkshire Bank

Will tsunami waves travel forever if there was no land?

What makes accurate emulation of old systems a difficult task?

Packing rectangles: Does rotation ever help?

Does the sign matter for proportionality?

How to type a section sign (§) into the Minecraft client

How to pronounce 'C++' in Spanish

With a Canadian student visa, can I spend a night at Vancouver before continuing to Toronto?

How to get a plain text file version of a CP/M .BAS (M-BASIC) program?

Are Boeing 737-800’s grounded?

Why isn't the definition of absolute value applied when squaring a radical containing a variable?

How come there are so many candidates for the 2020 Democratic party presidential nomination?

Critique of timeline aesthetic

Shrinkwrap tetris shapes without scaling or diagonal shapes

How to solve constants out of the internal energy equation?

Rivers without rain

What is the incentive for curl to release the library for free?

Pass By Reference VS Pass by Value



Was is really necessary for the Lunar module LM to have 2 stages?


How was reserve fuel calculated for the Apollo missions?Could the Apollo LM abort mode be engaged after touchdown? What would have happened if it was?Is true that Armstrong was not designated as first to walk on the moon?Where is the first Lunar soil sample currently located?Could a single crew member fly the Apollo LM?How might the Lunar X Prize contestant spacecraft have navigated their descent from orbit, to landing?Could the Apollo LM abort mode be engaged after touchdown? What would have happened if it was?Did the combined Command and Service Module and Lunar Module perform another 180° turn after transposition, docking and extraction?How did the Lunar Module dock with the rest of Apollo 11 and what is the “CSM”?Was there a technical reason why Apollo 10 didn't land on the moon?How long is the Apollo Lunar Module extraction window?Was there fuel consumption budgeting for Apollo 11 Lunar module?













1












$begingroup$


We all know the 2 stages LM design used by Grumman was intended to discard the mass of the landing gear (+ other components) at the moment of launching off the Moon surface to reach back the Service module. But was it really necessarily for the LM to have two stages? The reason I wonder is that, when Armstrong landed, as we know there was about 25 seconds fuel left - however, this was actually 25 sec. of fuel before aborting the landing with the complete LM, not before running out of fuel. After these 25 second would have ended, the LM still had enough fuel to ascend with both of its stages right back to the Service module. In other words, the LM was designed to be able to take off from the Moon surface with BOTH stages, even right after touching the surface, in case something would have gone wrong. Then, why using two stages which surely added complexity, weight and a second engine?










share|improve this question







New contributor




Mathias is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$












  • $begingroup$
    Do you have a reference for the ascent stage having enough fuel to return to orbit? Every source I have seen talks about the criticality of the ascent stage working because there were no other options. including sub optimal performance choices for better reliability and design of this en.wikipedia.org/wiki/Lunar_escape_systems. AFAIK the abort at 25 seconds involved firing the separation bolts and dumping the descent stage.
    $endgroup$
    – GremlinWranger
    3 hours ago










  • $begingroup$
    related ahttps://space.stackexchange.com/questions/2493/how-was-reserve-fuel-calculated-for-the-apollo-missions/30208#30208. Looks like descent module was designed to land with about 1.8% of the fuel it started out with.
    $endgroup$
    – GremlinWranger
    3 hours ago










  • $begingroup$
    There are a few documentaries on Youtube that include interviews with astronauts and engineers. It is mentioned that the remaining fuel was simply a measure of the safe point where the mission would have been aborted if the surface wasn't touched at that point. So aborting the landing would have meant going back to the service module with the LM in its complete configuration. An example, in the middle of this page it is mentioned the fact that the remaining fuel was the limit for abort landing moment space.com/26593-apollo-11-moon-landing-scariest-moments.html (a great page btw)
    $endgroup$
    – Mathias
    3 hours ago










  • $begingroup$
    See this previous question for clarity about LEM abort modes. space.stackexchange.com/questions/21686 There’s more than one, but none of them get back to orbit on descent stage engine only
    $endgroup$
    – Bob Jacobsen
    3 hours ago










  • $begingroup$
    "So aborting the landing would have meant going back to the service module with the LM in its complete configuration." -- why do you think that?
    $endgroup$
    – Russell Borogove
    2 hours ago
















1












$begingroup$


We all know the 2 stages LM design used by Grumman was intended to discard the mass of the landing gear (+ other components) at the moment of launching off the Moon surface to reach back the Service module. But was it really necessarily for the LM to have two stages? The reason I wonder is that, when Armstrong landed, as we know there was about 25 seconds fuel left - however, this was actually 25 sec. of fuel before aborting the landing with the complete LM, not before running out of fuel. After these 25 second would have ended, the LM still had enough fuel to ascend with both of its stages right back to the Service module. In other words, the LM was designed to be able to take off from the Moon surface with BOTH stages, even right after touching the surface, in case something would have gone wrong. Then, why using two stages which surely added complexity, weight and a second engine?










share|improve this question







New contributor




Mathias is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$












  • $begingroup$
    Do you have a reference for the ascent stage having enough fuel to return to orbit? Every source I have seen talks about the criticality of the ascent stage working because there were no other options. including sub optimal performance choices for better reliability and design of this en.wikipedia.org/wiki/Lunar_escape_systems. AFAIK the abort at 25 seconds involved firing the separation bolts and dumping the descent stage.
    $endgroup$
    – GremlinWranger
    3 hours ago










  • $begingroup$
    related ahttps://space.stackexchange.com/questions/2493/how-was-reserve-fuel-calculated-for-the-apollo-missions/30208#30208. Looks like descent module was designed to land with about 1.8% of the fuel it started out with.
    $endgroup$
    – GremlinWranger
    3 hours ago










  • $begingroup$
    There are a few documentaries on Youtube that include interviews with astronauts and engineers. It is mentioned that the remaining fuel was simply a measure of the safe point where the mission would have been aborted if the surface wasn't touched at that point. So aborting the landing would have meant going back to the service module with the LM in its complete configuration. An example, in the middle of this page it is mentioned the fact that the remaining fuel was the limit for abort landing moment space.com/26593-apollo-11-moon-landing-scariest-moments.html (a great page btw)
    $endgroup$
    – Mathias
    3 hours ago










  • $begingroup$
    See this previous question for clarity about LEM abort modes. space.stackexchange.com/questions/21686 There’s more than one, but none of them get back to orbit on descent stage engine only
    $endgroup$
    – Bob Jacobsen
    3 hours ago










  • $begingroup$
    "So aborting the landing would have meant going back to the service module with the LM in its complete configuration." -- why do you think that?
    $endgroup$
    – Russell Borogove
    2 hours ago














1












1








1





$begingroup$


We all know the 2 stages LM design used by Grumman was intended to discard the mass of the landing gear (+ other components) at the moment of launching off the Moon surface to reach back the Service module. But was it really necessarily for the LM to have two stages? The reason I wonder is that, when Armstrong landed, as we know there was about 25 seconds fuel left - however, this was actually 25 sec. of fuel before aborting the landing with the complete LM, not before running out of fuel. After these 25 second would have ended, the LM still had enough fuel to ascend with both of its stages right back to the Service module. In other words, the LM was designed to be able to take off from the Moon surface with BOTH stages, even right after touching the surface, in case something would have gone wrong. Then, why using two stages which surely added complexity, weight and a second engine?










share|improve this question







New contributor




Mathias is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$




We all know the 2 stages LM design used by Grumman was intended to discard the mass of the landing gear (+ other components) at the moment of launching off the Moon surface to reach back the Service module. But was it really necessarily for the LM to have two stages? The reason I wonder is that, when Armstrong landed, as we know there was about 25 seconds fuel left - however, this was actually 25 sec. of fuel before aborting the landing with the complete LM, not before running out of fuel. After these 25 second would have ended, the LM still had enough fuel to ascend with both of its stages right back to the Service module. In other words, the LM was designed to be able to take off from the Moon surface with BOTH stages, even right after touching the surface, in case something would have gone wrong. Then, why using two stages which surely added complexity, weight and a second engine?







apollo-program lunar-landing lunar-module






share|improve this question







New contributor




Mathias is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|improve this question







New contributor




Mathias is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|improve this question




share|improve this question






New contributor




Mathias is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked 4 hours ago









MathiasMathias

61




61




New contributor




Mathias is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





Mathias is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






Mathias is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.












  • $begingroup$
    Do you have a reference for the ascent stage having enough fuel to return to orbit? Every source I have seen talks about the criticality of the ascent stage working because there were no other options. including sub optimal performance choices for better reliability and design of this en.wikipedia.org/wiki/Lunar_escape_systems. AFAIK the abort at 25 seconds involved firing the separation bolts and dumping the descent stage.
    $endgroup$
    – GremlinWranger
    3 hours ago










  • $begingroup$
    related ahttps://space.stackexchange.com/questions/2493/how-was-reserve-fuel-calculated-for-the-apollo-missions/30208#30208. Looks like descent module was designed to land with about 1.8% of the fuel it started out with.
    $endgroup$
    – GremlinWranger
    3 hours ago










  • $begingroup$
    There are a few documentaries on Youtube that include interviews with astronauts and engineers. It is mentioned that the remaining fuel was simply a measure of the safe point where the mission would have been aborted if the surface wasn't touched at that point. So aborting the landing would have meant going back to the service module with the LM in its complete configuration. An example, in the middle of this page it is mentioned the fact that the remaining fuel was the limit for abort landing moment space.com/26593-apollo-11-moon-landing-scariest-moments.html (a great page btw)
    $endgroup$
    – Mathias
    3 hours ago










  • $begingroup$
    See this previous question for clarity about LEM abort modes. space.stackexchange.com/questions/21686 There’s more than one, but none of them get back to orbit on descent stage engine only
    $endgroup$
    – Bob Jacobsen
    3 hours ago










  • $begingroup$
    "So aborting the landing would have meant going back to the service module with the LM in its complete configuration." -- why do you think that?
    $endgroup$
    – Russell Borogove
    2 hours ago


















  • $begingroup$
    Do you have a reference for the ascent stage having enough fuel to return to orbit? Every source I have seen talks about the criticality of the ascent stage working because there were no other options. including sub optimal performance choices for better reliability and design of this en.wikipedia.org/wiki/Lunar_escape_systems. AFAIK the abort at 25 seconds involved firing the separation bolts and dumping the descent stage.
    $endgroup$
    – GremlinWranger
    3 hours ago










  • $begingroup$
    related ahttps://space.stackexchange.com/questions/2493/how-was-reserve-fuel-calculated-for-the-apollo-missions/30208#30208. Looks like descent module was designed to land with about 1.8% of the fuel it started out with.
    $endgroup$
    – GremlinWranger
    3 hours ago










  • $begingroup$
    There are a few documentaries on Youtube that include interviews with astronauts and engineers. It is mentioned that the remaining fuel was simply a measure of the safe point where the mission would have been aborted if the surface wasn't touched at that point. So aborting the landing would have meant going back to the service module with the LM in its complete configuration. An example, in the middle of this page it is mentioned the fact that the remaining fuel was the limit for abort landing moment space.com/26593-apollo-11-moon-landing-scariest-moments.html (a great page btw)
    $endgroup$
    – Mathias
    3 hours ago










  • $begingroup$
    See this previous question for clarity about LEM abort modes. space.stackexchange.com/questions/21686 There’s more than one, but none of them get back to orbit on descent stage engine only
    $endgroup$
    – Bob Jacobsen
    3 hours ago










  • $begingroup$
    "So aborting the landing would have meant going back to the service module with the LM in its complete configuration." -- why do you think that?
    $endgroup$
    – Russell Borogove
    2 hours ago
















$begingroup$
Do you have a reference for the ascent stage having enough fuel to return to orbit? Every source I have seen talks about the criticality of the ascent stage working because there were no other options. including sub optimal performance choices for better reliability and design of this en.wikipedia.org/wiki/Lunar_escape_systems. AFAIK the abort at 25 seconds involved firing the separation bolts and dumping the descent stage.
$endgroup$
– GremlinWranger
3 hours ago




$begingroup$
Do you have a reference for the ascent stage having enough fuel to return to orbit? Every source I have seen talks about the criticality of the ascent stage working because there were no other options. including sub optimal performance choices for better reliability and design of this en.wikipedia.org/wiki/Lunar_escape_systems. AFAIK the abort at 25 seconds involved firing the separation bolts and dumping the descent stage.
$endgroup$
– GremlinWranger
3 hours ago












$begingroup$
related ahttps://space.stackexchange.com/questions/2493/how-was-reserve-fuel-calculated-for-the-apollo-missions/30208#30208. Looks like descent module was designed to land with about 1.8% of the fuel it started out with.
$endgroup$
– GremlinWranger
3 hours ago




$begingroup$
related ahttps://space.stackexchange.com/questions/2493/how-was-reserve-fuel-calculated-for-the-apollo-missions/30208#30208. Looks like descent module was designed to land with about 1.8% of the fuel it started out with.
$endgroup$
– GremlinWranger
3 hours ago












$begingroup$
There are a few documentaries on Youtube that include interviews with astronauts and engineers. It is mentioned that the remaining fuel was simply a measure of the safe point where the mission would have been aborted if the surface wasn't touched at that point. So aborting the landing would have meant going back to the service module with the LM in its complete configuration. An example, in the middle of this page it is mentioned the fact that the remaining fuel was the limit for abort landing moment space.com/26593-apollo-11-moon-landing-scariest-moments.html (a great page btw)
$endgroup$
– Mathias
3 hours ago




$begingroup$
There are a few documentaries on Youtube that include interviews with astronauts and engineers. It is mentioned that the remaining fuel was simply a measure of the safe point where the mission would have been aborted if the surface wasn't touched at that point. So aborting the landing would have meant going back to the service module with the LM in its complete configuration. An example, in the middle of this page it is mentioned the fact that the remaining fuel was the limit for abort landing moment space.com/26593-apollo-11-moon-landing-scariest-moments.html (a great page btw)
$endgroup$
– Mathias
3 hours ago












$begingroup$
See this previous question for clarity about LEM abort modes. space.stackexchange.com/questions/21686 There’s more than one, but none of them get back to orbit on descent stage engine only
$endgroup$
– Bob Jacobsen
3 hours ago




$begingroup$
See this previous question for clarity about LEM abort modes. space.stackexchange.com/questions/21686 There’s more than one, but none of them get back to orbit on descent stage engine only
$endgroup$
– Bob Jacobsen
3 hours ago












$begingroup$
"So aborting the landing would have meant going back to the service module with the LM in its complete configuration." -- why do you think that?
$endgroup$
– Russell Borogove
2 hours ago




$begingroup$
"So aborting the landing would have meant going back to the service module with the LM in its complete configuration." -- why do you think that?
$endgroup$
– Russell Borogove
2 hours ago










1 Answer
1






active

oldest

votes


















3












$begingroup$


After these 25 second would have ended, the LM still had enough fuel to ascend with both of its stages right back to the Service module. In other words, the LM was designed to be able to take off from the Moon surface with BOTH stages, even right after touching the surface, in case something would have gone wrong. Then, why using two stages which surely added complexity, weight and a second engine?




Your assumption is not correct. Aborting from the "bingo" (low fuel) call would have required the ascent stage to be used. The stages can be separated, and the ascent engine fired, while in flight; this was demonstrated on Apollo 9 and Apollo 10.



Because there would be a brief delay between staging and the ascent stage coming up to full thrust, the safest way to abort in this case would be to take the descent stage to full thrust to gain altitude and vertical speed, then stage and activate the ascent stage engine once the descent stage fuel was exhausted.



The ascent from lunar surface to rendezvous orbit took about 7 minutes on the ascent stage; there was nowhere near enough fuel in the descent stage to do that.






share|improve this answer











$endgroup$














    Your Answer








    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "508"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: false,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: null,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });






    Mathias is a new contributor. Be nice, and check out our Code of Conduct.










    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fspace.stackexchange.com%2fquestions%2f35798%2fwas-is-really-necessary-for-the-lunar-module-lm-to-have-2-stages%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    3












    $begingroup$


    After these 25 second would have ended, the LM still had enough fuel to ascend with both of its stages right back to the Service module. In other words, the LM was designed to be able to take off from the Moon surface with BOTH stages, even right after touching the surface, in case something would have gone wrong. Then, why using two stages which surely added complexity, weight and a second engine?




    Your assumption is not correct. Aborting from the "bingo" (low fuel) call would have required the ascent stage to be used. The stages can be separated, and the ascent engine fired, while in flight; this was demonstrated on Apollo 9 and Apollo 10.



    Because there would be a brief delay between staging and the ascent stage coming up to full thrust, the safest way to abort in this case would be to take the descent stage to full thrust to gain altitude and vertical speed, then stage and activate the ascent stage engine once the descent stage fuel was exhausted.



    The ascent from lunar surface to rendezvous orbit took about 7 minutes on the ascent stage; there was nowhere near enough fuel in the descent stage to do that.






    share|improve this answer











    $endgroup$


















      3












      $begingroup$


      After these 25 second would have ended, the LM still had enough fuel to ascend with both of its stages right back to the Service module. In other words, the LM was designed to be able to take off from the Moon surface with BOTH stages, even right after touching the surface, in case something would have gone wrong. Then, why using two stages which surely added complexity, weight and a second engine?




      Your assumption is not correct. Aborting from the "bingo" (low fuel) call would have required the ascent stage to be used. The stages can be separated, and the ascent engine fired, while in flight; this was demonstrated on Apollo 9 and Apollo 10.



      Because there would be a brief delay between staging and the ascent stage coming up to full thrust, the safest way to abort in this case would be to take the descent stage to full thrust to gain altitude and vertical speed, then stage and activate the ascent stage engine once the descent stage fuel was exhausted.



      The ascent from lunar surface to rendezvous orbit took about 7 minutes on the ascent stage; there was nowhere near enough fuel in the descent stage to do that.






      share|improve this answer











      $endgroup$
















        3












        3








        3





        $begingroup$


        After these 25 second would have ended, the LM still had enough fuel to ascend with both of its stages right back to the Service module. In other words, the LM was designed to be able to take off from the Moon surface with BOTH stages, even right after touching the surface, in case something would have gone wrong. Then, why using two stages which surely added complexity, weight and a second engine?




        Your assumption is not correct. Aborting from the "bingo" (low fuel) call would have required the ascent stage to be used. The stages can be separated, and the ascent engine fired, while in flight; this was demonstrated on Apollo 9 and Apollo 10.



        Because there would be a brief delay between staging and the ascent stage coming up to full thrust, the safest way to abort in this case would be to take the descent stage to full thrust to gain altitude and vertical speed, then stage and activate the ascent stage engine once the descent stage fuel was exhausted.



        The ascent from lunar surface to rendezvous orbit took about 7 minutes on the ascent stage; there was nowhere near enough fuel in the descent stage to do that.






        share|improve this answer











        $endgroup$




        After these 25 second would have ended, the LM still had enough fuel to ascend with both of its stages right back to the Service module. In other words, the LM was designed to be able to take off from the Moon surface with BOTH stages, even right after touching the surface, in case something would have gone wrong. Then, why using two stages which surely added complexity, weight and a second engine?




        Your assumption is not correct. Aborting from the "bingo" (low fuel) call would have required the ascent stage to be used. The stages can be separated, and the ascent engine fired, while in flight; this was demonstrated on Apollo 9 and Apollo 10.



        Because there would be a brief delay between staging and the ascent stage coming up to full thrust, the safest way to abort in this case would be to take the descent stage to full thrust to gain altitude and vertical speed, then stage and activate the ascent stage engine once the descent stage fuel was exhausted.



        The ascent from lunar surface to rendezvous orbit took about 7 minutes on the ascent stage; there was nowhere near enough fuel in the descent stage to do that.







        share|improve this answer














        share|improve this answer



        share|improve this answer








        edited 2 hours ago

























        answered 2 hours ago









        Russell BorogoveRussell Borogove

        90.4k3302387




        90.4k3302387






















            Mathias is a new contributor. Be nice, and check out our Code of Conduct.










            draft saved

            draft discarded


















            Mathias is a new contributor. Be nice, and check out our Code of Conduct.













            Mathias is a new contributor. Be nice, and check out our Code of Conduct.












            Mathias is a new contributor. Be nice, and check out our Code of Conduct.
















            Thanks for contributing an answer to Space Exploration Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fspace.stackexchange.com%2fquestions%2f35798%2fwas-is-really-necessary-for-the-lunar-module-lm-to-have-2-stages%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            El tren de la libertad Índice Antecedentes "Porque yo decido" Desarrollo de la...

            Castillo d'Acher Características Menú de navegación

            Connecting two nodes from the same mother node horizontallyTikZ: What EXACTLY does the the |- notation for...