Ring Automorphisms that fix 1. Announcing the arrival of Valued Associate #679: Cesar Manara ...

Can a USB port passively 'listen only'?

Can an alien society believe that their star system is the universe?

Why is "Consequences inflicted." not a sentence?

What does this icon in iOS Stardew Valley mean?

Is it ethical to give a final exam after the professor has quit before teaching the remaining chapters of the course?

Is it fair for a professor to grade us on the possession of past papers?

Naming the result of a source block

How to answer "Have you ever been terminated?"

Withdrew £2800, but only £2000 shows as withdrawn on online banking; what are my obligations?

porting install scripts : can rpm replace apt?

What's the meaning of 間時肆拾貳 at a car parking sign

Short Story with Cinderella as a Voo-doo Witch

What causes the vertical darker bands in my photo?

How do I stop a creek from eroding my steep embankment?

What is the role of the transistor and diode in a soft start circuit?

How to align text above triangle figure

Fundamental Solution of the Pell Equation

Is the Standard Deduction better than Itemized when both are the same amount?

What does an IRS interview request entail when called in to verify expenses for a sole proprietor small business?

When a candle burns, why does the top of wick glow if bottom of flame is hottest?

Why was the term "discrete" used in discrete logarithm?

Why are there no cargo aircraft with "flying wing" design?

Resolving to minmaj7

How widely used is the term Treppenwitz? Is it something that most Germans know?



Ring Automorphisms that fix 1.



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Automorphisms of $mathbb Q(sqrt 2)$Automorphisms of $mathbb{R}^n$group of automorphisms of the ring $mathbb{Z}timesmathbb{Z}$Trying to understand a proof for the automorphisms of a polynomial ringAll automorphisms of splitting fieldsDetermining automorphisms of this extensionRing automorphisms of $mathbb{Q}[sqrt[3]{5}]$Automorphism of ring and isomorphism of quotient ringsThe automorphisms of the extension $mathbb{Q}(sqrt[4]{2})/mathbb{Q}$.Extension theorem for field automorphismsAre all verbal automorphisms inner power automorphisms?












2












$begingroup$


This question is a follow - up to this question about Field Automorphisms of $mathbb{Q}[sqrt{2}]$.



Since $mathbb{Q}[sqrt{2}]$ is a vector space over $mathbb{Q}$ with basis ${1, sqrt{2}}$, I naively understand why it is the case that automorphisms $phi$ of $mathbb{Q}[sqrt{2}]$ are determined wholly by the image of $1$ and $sqrt{2}$. My problem is using this fact explicitly. For example, suppose I consider the automorphism $phi$ such that $phi(1) = 1$ and $phi(sqrt{2}) = sqrt{2}$, and I want to compute the value of $phi(frac{3}{2})$. I can do the following:



$$ phi(frac{3}{2}) = phi(3) phi(frac{1}{2}) = [phi(1) + phi(1) + phi(1)] phi(frac{1}{2}) = 3phi(frac{1}{2}).$$



I am unsure how to proceed from here. I would assume that it is true that $$phi(frac{1}{1 + 1}) = frac{phi(1)}{phi(1) + phi(1)} = frac{1}{2},$$ but I don't know what property of ring isomorphisms would allow me to do this.










share|cite|improve this question









$endgroup$

















    2












    $begingroup$


    This question is a follow - up to this question about Field Automorphisms of $mathbb{Q}[sqrt{2}]$.



    Since $mathbb{Q}[sqrt{2}]$ is a vector space over $mathbb{Q}$ with basis ${1, sqrt{2}}$, I naively understand why it is the case that automorphisms $phi$ of $mathbb{Q}[sqrt{2}]$ are determined wholly by the image of $1$ and $sqrt{2}$. My problem is using this fact explicitly. For example, suppose I consider the automorphism $phi$ such that $phi(1) = 1$ and $phi(sqrt{2}) = sqrt{2}$, and I want to compute the value of $phi(frac{3}{2})$. I can do the following:



    $$ phi(frac{3}{2}) = phi(3) phi(frac{1}{2}) = [phi(1) + phi(1) + phi(1)] phi(frac{1}{2}) = 3phi(frac{1}{2}).$$



    I am unsure how to proceed from here. I would assume that it is true that $$phi(frac{1}{1 + 1}) = frac{phi(1)}{phi(1) + phi(1)} = frac{1}{2},$$ but I don't know what property of ring isomorphisms would allow me to do this.










    share|cite|improve this question









    $endgroup$















      2












      2








      2





      $begingroup$


      This question is a follow - up to this question about Field Automorphisms of $mathbb{Q}[sqrt{2}]$.



      Since $mathbb{Q}[sqrt{2}]$ is a vector space over $mathbb{Q}$ with basis ${1, sqrt{2}}$, I naively understand why it is the case that automorphisms $phi$ of $mathbb{Q}[sqrt{2}]$ are determined wholly by the image of $1$ and $sqrt{2}$. My problem is using this fact explicitly. For example, suppose I consider the automorphism $phi$ such that $phi(1) = 1$ and $phi(sqrt{2}) = sqrt{2}$, and I want to compute the value of $phi(frac{3}{2})$. I can do the following:



      $$ phi(frac{3}{2}) = phi(3) phi(frac{1}{2}) = [phi(1) + phi(1) + phi(1)] phi(frac{1}{2}) = 3phi(frac{1}{2}).$$



      I am unsure how to proceed from here. I would assume that it is true that $$phi(frac{1}{1 + 1}) = frac{phi(1)}{phi(1) + phi(1)} = frac{1}{2},$$ but I don't know what property of ring isomorphisms would allow me to do this.










      share|cite|improve this question









      $endgroup$




      This question is a follow - up to this question about Field Automorphisms of $mathbb{Q}[sqrt{2}]$.



      Since $mathbb{Q}[sqrt{2}]$ is a vector space over $mathbb{Q}$ with basis ${1, sqrt{2}}$, I naively understand why it is the case that automorphisms $phi$ of $mathbb{Q}[sqrt{2}]$ are determined wholly by the image of $1$ and $sqrt{2}$. My problem is using this fact explicitly. For example, suppose I consider the automorphism $phi$ such that $phi(1) = 1$ and $phi(sqrt{2}) = sqrt{2}$, and I want to compute the value of $phi(frac{3}{2})$. I can do the following:



      $$ phi(frac{3}{2}) = phi(3) phi(frac{1}{2}) = [phi(1) + phi(1) + phi(1)] phi(frac{1}{2}) = 3phi(frac{1}{2}).$$



      I am unsure how to proceed from here. I would assume that it is true that $$phi(frac{1}{1 + 1}) = frac{phi(1)}{phi(1) + phi(1)} = frac{1}{2},$$ but I don't know what property of ring isomorphisms would allow me to do this.







      abstract-algebra ring-theory field-theory galois-theory






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked 3 hours ago









      Solarflare0Solarflare0

      9813




      9813






















          2 Answers
          2






          active

          oldest

          votes


















          3












          $begingroup$

          $$
          2phi(frac{3}{2}) = phi(3) = 3phi(1) = 3
          implies
          phi(frac{3}{2}) =frac{3}{2}
          $$

          Generalizing this argument gives $phi(q) = q$ for all $q in mathbb Q$.






          share|cite|improve this answer









          $endgroup$





















            1












            $begingroup$

            Every automorphism fixes $mathbb{Q}$. That is, if $K$ is any field of characteristic zero, then any automorphism of $K$ fixes the unique subfield of $K$ isomorphic to $mathbb{Q}$.



            For the proof, we assume WLOG that $mathbb{Q} subseteq K$. Then:




            • $phi$ fixes $0$ and $1$, by definition.


            • $phi$ fixes all positive integers, since $phi(n) = phi(1 + 1 + cdots + 1) = n phi(1) = n$.


            • $phi$ fixes all negative integers, since $phi(n) + phi(-n) = phi(n-n) = 0$, so $phi(-n) = -phi(n) = -n$.


            • $phi$ fixes all rational numbers, since $n cdot phileft(frac{m}{n}right) = phi(m) = m$, so $phileft(frac{m}{n}right) = frac{m}{n}$.





            More generally, when we consider automorphisms of a field extension $K / F$, we often restrict our attention only to automorphisms which fix the base field $F$. But when $F = mathbb{Q}$, since all automorphisms fix $mathbb{Q}$, such a restriction is unnecessary.






            share|cite|improve this answer









            $endgroup$














              Your Answer








              StackExchange.ready(function() {
              var channelOptions = {
              tags: "".split(" "),
              id: "69"
              };
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function() {
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled) {
              StackExchange.using("snippets", function() {
              createEditor();
              });
              }
              else {
              createEditor();
              }
              });

              function createEditor() {
              StackExchange.prepareEditor({
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader: {
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              },
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              });


              }
              });














              draft saved

              draft discarded


















              StackExchange.ready(
              function () {
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3190546%2fring-automorphisms-that-fix-1%23new-answer', 'question_page');
              }
              );

              Post as a guest















              Required, but never shown

























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              3












              $begingroup$

              $$
              2phi(frac{3}{2}) = phi(3) = 3phi(1) = 3
              implies
              phi(frac{3}{2}) =frac{3}{2}
              $$

              Generalizing this argument gives $phi(q) = q$ for all $q in mathbb Q$.






              share|cite|improve this answer









              $endgroup$


















                3












                $begingroup$

                $$
                2phi(frac{3}{2}) = phi(3) = 3phi(1) = 3
                implies
                phi(frac{3}{2}) =frac{3}{2}
                $$

                Generalizing this argument gives $phi(q) = q$ for all $q in mathbb Q$.






                share|cite|improve this answer









                $endgroup$
















                  3












                  3








                  3





                  $begingroup$

                  $$
                  2phi(frac{3}{2}) = phi(3) = 3phi(1) = 3
                  implies
                  phi(frac{3}{2}) =frac{3}{2}
                  $$

                  Generalizing this argument gives $phi(q) = q$ for all $q in mathbb Q$.






                  share|cite|improve this answer









                  $endgroup$



                  $$
                  2phi(frac{3}{2}) = phi(3) = 3phi(1) = 3
                  implies
                  phi(frac{3}{2}) =frac{3}{2}
                  $$

                  Generalizing this argument gives $phi(q) = q$ for all $q in mathbb Q$.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered 3 hours ago









                  lhflhf

                  168k11172405




                  168k11172405























                      1












                      $begingroup$

                      Every automorphism fixes $mathbb{Q}$. That is, if $K$ is any field of characteristic zero, then any automorphism of $K$ fixes the unique subfield of $K$ isomorphic to $mathbb{Q}$.



                      For the proof, we assume WLOG that $mathbb{Q} subseteq K$. Then:




                      • $phi$ fixes $0$ and $1$, by definition.


                      • $phi$ fixes all positive integers, since $phi(n) = phi(1 + 1 + cdots + 1) = n phi(1) = n$.


                      • $phi$ fixes all negative integers, since $phi(n) + phi(-n) = phi(n-n) = 0$, so $phi(-n) = -phi(n) = -n$.


                      • $phi$ fixes all rational numbers, since $n cdot phileft(frac{m}{n}right) = phi(m) = m$, so $phileft(frac{m}{n}right) = frac{m}{n}$.





                      More generally, when we consider automorphisms of a field extension $K / F$, we often restrict our attention only to automorphisms which fix the base field $F$. But when $F = mathbb{Q}$, since all automorphisms fix $mathbb{Q}$, such a restriction is unnecessary.






                      share|cite|improve this answer









                      $endgroup$


















                        1












                        $begingroup$

                        Every automorphism fixes $mathbb{Q}$. That is, if $K$ is any field of characteristic zero, then any automorphism of $K$ fixes the unique subfield of $K$ isomorphic to $mathbb{Q}$.



                        For the proof, we assume WLOG that $mathbb{Q} subseteq K$. Then:




                        • $phi$ fixes $0$ and $1$, by definition.


                        • $phi$ fixes all positive integers, since $phi(n) = phi(1 + 1 + cdots + 1) = n phi(1) = n$.


                        • $phi$ fixes all negative integers, since $phi(n) + phi(-n) = phi(n-n) = 0$, so $phi(-n) = -phi(n) = -n$.


                        • $phi$ fixes all rational numbers, since $n cdot phileft(frac{m}{n}right) = phi(m) = m$, so $phileft(frac{m}{n}right) = frac{m}{n}$.





                        More generally, when we consider automorphisms of a field extension $K / F$, we often restrict our attention only to automorphisms which fix the base field $F$. But when $F = mathbb{Q}$, since all automorphisms fix $mathbb{Q}$, such a restriction is unnecessary.






                        share|cite|improve this answer









                        $endgroup$
















                          1












                          1








                          1





                          $begingroup$

                          Every automorphism fixes $mathbb{Q}$. That is, if $K$ is any field of characteristic zero, then any automorphism of $K$ fixes the unique subfield of $K$ isomorphic to $mathbb{Q}$.



                          For the proof, we assume WLOG that $mathbb{Q} subseteq K$. Then:




                          • $phi$ fixes $0$ and $1$, by definition.


                          • $phi$ fixes all positive integers, since $phi(n) = phi(1 + 1 + cdots + 1) = n phi(1) = n$.


                          • $phi$ fixes all negative integers, since $phi(n) + phi(-n) = phi(n-n) = 0$, so $phi(-n) = -phi(n) = -n$.


                          • $phi$ fixes all rational numbers, since $n cdot phileft(frac{m}{n}right) = phi(m) = m$, so $phileft(frac{m}{n}right) = frac{m}{n}$.





                          More generally, when we consider automorphisms of a field extension $K / F$, we often restrict our attention only to automorphisms which fix the base field $F$. But when $F = mathbb{Q}$, since all automorphisms fix $mathbb{Q}$, such a restriction is unnecessary.






                          share|cite|improve this answer









                          $endgroup$



                          Every automorphism fixes $mathbb{Q}$. That is, if $K$ is any field of characteristic zero, then any automorphism of $K$ fixes the unique subfield of $K$ isomorphic to $mathbb{Q}$.



                          For the proof, we assume WLOG that $mathbb{Q} subseteq K$. Then:




                          • $phi$ fixes $0$ and $1$, by definition.


                          • $phi$ fixes all positive integers, since $phi(n) = phi(1 + 1 + cdots + 1) = n phi(1) = n$.


                          • $phi$ fixes all negative integers, since $phi(n) + phi(-n) = phi(n-n) = 0$, so $phi(-n) = -phi(n) = -n$.


                          • $phi$ fixes all rational numbers, since $n cdot phileft(frac{m}{n}right) = phi(m) = m$, so $phileft(frac{m}{n}right) = frac{m}{n}$.





                          More generally, when we consider automorphisms of a field extension $K / F$, we often restrict our attention only to automorphisms which fix the base field $F$. But when $F = mathbb{Q}$, since all automorphisms fix $mathbb{Q}$, such a restriction is unnecessary.







                          share|cite|improve this answer












                          share|cite|improve this answer



                          share|cite|improve this answer










                          answered 2 hours ago









                          60056005

                          37.1k752127




                          37.1k752127






























                              draft saved

                              draft discarded




















































                              Thanks for contributing an answer to Mathematics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function () {
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3190546%2fring-automorphisms-that-fix-1%23new-answer', 'question_page');
                              }
                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              El tren de la libertad Índice Antecedentes "Porque yo decido" Desarrollo de la...

                              Puerta de Hutt Referencias Enlaces externos Menú de navegación15°58′00″S 5°42′00″O /...

                              Castillo d'Acher Características Menú de navegación