Finding the error in an argumentChain rule notation for function with two variablesThe multivariable chain...
In Bayesian inference, why are some terms dropped from the posterior predictive?
Mathematica command that allows it to read my intentions
Am I breaking OOP practice with this architecture?
What are the G forces leaving Earth orbit?
Is there a hemisphere-neutral way of specifying a season?
Implication of namely
Knowledge-based authentication using Domain-driven Design in C#
What historical events would have to change in order to make 19th century "steampunk" technology possible?
How exploitable/balanced is this homebrew spell: Spell Permanency?
Ambiguity in the definition of entropy
Why do I get negative height?
Why was the shrink from 8″ made only to 5.25″ and not smaller (4″ or less)
What reasons are there for a Capitalist to oppose a 100% inheritance tax?
Theorists sure want true answers to this!
Does the Idaho Potato Commission associate potato skins with healthy eating?
Getting extremely large arrows with tikzcd
Do creatures with a listed speed of "0 ft., fly 30 ft. (hover)" ever touch the ground?
What is the fastest integer factorization to break RSA?
Partial fraction expansion confusion
How to coordinate airplane tickets?
Notepad++ delete until colon for every line with replace all
How to compactly explain secondary and tertiary characters without resorting to stereotypes?
What do you call someone who asks many questions?
Bullying boss launched a smear campaign and made me unemployable
Finding the error in an argument
Chain rule notation for function with two variablesThe multivariable chain rule and functions that depend on themselvesCalculate partial derivative $f'_x, f'_y, f'_z$ where $f(x, y, z) = x^{frac{y}{z}}$Simple Chain Rule for PartialsChain rule for partial derivativesQuestion regarding the proof of the directional derivativePartial derivative of a function w.r.t an argument that occurs multiple timesDerivative of function of matrices using the product ruleWhen to use Partial derivatives and chain rulePartial derivative with dependent variables
$begingroup$
If $z=f(x,y)$ and $y=x^2$, then by the chain rule
$frac{partial z}{partial x}=frac{partial z}{partial x}frac{partial x}{partial x}+frac{partial z}{partial y}frac{partial y}{partial x}=frac{partial z}{partial x}+2xfrac{partial z}{partial y}$
Therefore
$2xfrac{partial z}{partial y}=0$
and
$frac{partial z}{partial y}=0$
What is wrong with this argument?
I have a feeling that
1.) $x$ and $y$ do not have partial derivatives because they are single-variable, and
2.) $frac{partial z}{partial y}$ cannot be zero, because $y=x^2$ and therefore the derivative of any $y$ term exists.
How is my reasoning? I am pretty confused by this question.
calculus multivariable-calculus partial-derivative
$endgroup$
add a comment |
$begingroup$
If $z=f(x,y)$ and $y=x^2$, then by the chain rule
$frac{partial z}{partial x}=frac{partial z}{partial x}frac{partial x}{partial x}+frac{partial z}{partial y}frac{partial y}{partial x}=frac{partial z}{partial x}+2xfrac{partial z}{partial y}$
Therefore
$2xfrac{partial z}{partial y}=0$
and
$frac{partial z}{partial y}=0$
What is wrong with this argument?
I have a feeling that
1.) $x$ and $y$ do not have partial derivatives because they are single-variable, and
2.) $frac{partial z}{partial y}$ cannot be zero, because $y=x^2$ and therefore the derivative of any $y$ term exists.
How is my reasoning? I am pretty confused by this question.
calculus multivariable-calculus partial-derivative
$endgroup$
$begingroup$
My first question for you is why do you think this line of reasoning is incorrect? Did someone tell you it wasn't right?
$endgroup$
– BSplitter
2 hours ago
1
$begingroup$
I also will note that if $2xfrac{partial z}{partial y} =0$, then either $x=0$ or $frac{partial z}{partial y} =0$.
$endgroup$
– BSplitter
1 hour ago
$begingroup$
@BSplitter the problem itself poses this argument as incorrect, the object being to find out why
$endgroup$
– mathenthusiast
1 hour ago
add a comment |
$begingroup$
If $z=f(x,y)$ and $y=x^2$, then by the chain rule
$frac{partial z}{partial x}=frac{partial z}{partial x}frac{partial x}{partial x}+frac{partial z}{partial y}frac{partial y}{partial x}=frac{partial z}{partial x}+2xfrac{partial z}{partial y}$
Therefore
$2xfrac{partial z}{partial y}=0$
and
$frac{partial z}{partial y}=0$
What is wrong with this argument?
I have a feeling that
1.) $x$ and $y$ do not have partial derivatives because they are single-variable, and
2.) $frac{partial z}{partial y}$ cannot be zero, because $y=x^2$ and therefore the derivative of any $y$ term exists.
How is my reasoning? I am pretty confused by this question.
calculus multivariable-calculus partial-derivative
$endgroup$
If $z=f(x,y)$ and $y=x^2$, then by the chain rule
$frac{partial z}{partial x}=frac{partial z}{partial x}frac{partial x}{partial x}+frac{partial z}{partial y}frac{partial y}{partial x}=frac{partial z}{partial x}+2xfrac{partial z}{partial y}$
Therefore
$2xfrac{partial z}{partial y}=0$
and
$frac{partial z}{partial y}=0$
What is wrong with this argument?
I have a feeling that
1.) $x$ and $y$ do not have partial derivatives because they are single-variable, and
2.) $frac{partial z}{partial y}$ cannot be zero, because $y=x^2$ and therefore the derivative of any $y$ term exists.
How is my reasoning? I am pretty confused by this question.
calculus multivariable-calculus partial-derivative
calculus multivariable-calculus partial-derivative
edited 2 hours ago
mathenthusiast
asked 2 hours ago
mathenthusiastmathenthusiast
758
758
$begingroup$
My first question for you is why do you think this line of reasoning is incorrect? Did someone tell you it wasn't right?
$endgroup$
– BSplitter
2 hours ago
1
$begingroup$
I also will note that if $2xfrac{partial z}{partial y} =0$, then either $x=0$ or $frac{partial z}{partial y} =0$.
$endgroup$
– BSplitter
1 hour ago
$begingroup$
@BSplitter the problem itself poses this argument as incorrect, the object being to find out why
$endgroup$
– mathenthusiast
1 hour ago
add a comment |
$begingroup$
My first question for you is why do you think this line of reasoning is incorrect? Did someone tell you it wasn't right?
$endgroup$
– BSplitter
2 hours ago
1
$begingroup$
I also will note that if $2xfrac{partial z}{partial y} =0$, then either $x=0$ or $frac{partial z}{partial y} =0$.
$endgroup$
– BSplitter
1 hour ago
$begingroup$
@BSplitter the problem itself poses this argument as incorrect, the object being to find out why
$endgroup$
– mathenthusiast
1 hour ago
$begingroup$
My first question for you is why do you think this line of reasoning is incorrect? Did someone tell you it wasn't right?
$endgroup$
– BSplitter
2 hours ago
$begingroup$
My first question for you is why do you think this line of reasoning is incorrect? Did someone tell you it wasn't right?
$endgroup$
– BSplitter
2 hours ago
1
1
$begingroup$
I also will note that if $2xfrac{partial z}{partial y} =0$, then either $x=0$ or $frac{partial z}{partial y} =0$.
$endgroup$
– BSplitter
1 hour ago
$begingroup$
I also will note that if $2xfrac{partial z}{partial y} =0$, then either $x=0$ or $frac{partial z}{partial y} =0$.
$endgroup$
– BSplitter
1 hour ago
$begingroup$
@BSplitter the problem itself poses this argument as incorrect, the object being to find out why
$endgroup$
– mathenthusiast
1 hour ago
$begingroup$
@BSplitter the problem itself poses this argument as incorrect, the object being to find out why
$endgroup$
– mathenthusiast
1 hour ago
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Nothing wrong. Just change it into
$$frac{d z}{d x}=frac{partial z}{partial x}frac{partial x}{partial x}+frac{partial z}{partial y}frac{partial y}{partial x}=frac{partial z}{partial x}+2xfrac{partial z}{partial y}$$
Note that that the first term is $frac{d z}{d x}$, which is different from $frac{partial z}{partial x}$. So they cannot cancel out. The partial derivatives do exist, but be careful not to mix it up with $frac{d z}{d x}$, which is NOT a partial derivative.
Actually, a better way to say this is that
$$left[frac{partial z}{partial x}right]_{y=x^2}=frac{partial z}{partial x}frac{partial x}{partial x}+frac{partial z}{partial y}frac{partial y}{partial x}=frac{partial z}{partial x}+2xfrac{partial z}{partial y}.$$
Where I have clearly written down the restriction $y=x^2$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3172680%2ffinding-the-error-in-an-argument%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Nothing wrong. Just change it into
$$frac{d z}{d x}=frac{partial z}{partial x}frac{partial x}{partial x}+frac{partial z}{partial y}frac{partial y}{partial x}=frac{partial z}{partial x}+2xfrac{partial z}{partial y}$$
Note that that the first term is $frac{d z}{d x}$, which is different from $frac{partial z}{partial x}$. So they cannot cancel out. The partial derivatives do exist, but be careful not to mix it up with $frac{d z}{d x}$, which is NOT a partial derivative.
Actually, a better way to say this is that
$$left[frac{partial z}{partial x}right]_{y=x^2}=frac{partial z}{partial x}frac{partial x}{partial x}+frac{partial z}{partial y}frac{partial y}{partial x}=frac{partial z}{partial x}+2xfrac{partial z}{partial y}.$$
Where I have clearly written down the restriction $y=x^2$.
$endgroup$
add a comment |
$begingroup$
Nothing wrong. Just change it into
$$frac{d z}{d x}=frac{partial z}{partial x}frac{partial x}{partial x}+frac{partial z}{partial y}frac{partial y}{partial x}=frac{partial z}{partial x}+2xfrac{partial z}{partial y}$$
Note that that the first term is $frac{d z}{d x}$, which is different from $frac{partial z}{partial x}$. So they cannot cancel out. The partial derivatives do exist, but be careful not to mix it up with $frac{d z}{d x}$, which is NOT a partial derivative.
Actually, a better way to say this is that
$$left[frac{partial z}{partial x}right]_{y=x^2}=frac{partial z}{partial x}frac{partial x}{partial x}+frac{partial z}{partial y}frac{partial y}{partial x}=frac{partial z}{partial x}+2xfrac{partial z}{partial y}.$$
Where I have clearly written down the restriction $y=x^2$.
$endgroup$
add a comment |
$begingroup$
Nothing wrong. Just change it into
$$frac{d z}{d x}=frac{partial z}{partial x}frac{partial x}{partial x}+frac{partial z}{partial y}frac{partial y}{partial x}=frac{partial z}{partial x}+2xfrac{partial z}{partial y}$$
Note that that the first term is $frac{d z}{d x}$, which is different from $frac{partial z}{partial x}$. So they cannot cancel out. The partial derivatives do exist, but be careful not to mix it up with $frac{d z}{d x}$, which is NOT a partial derivative.
Actually, a better way to say this is that
$$left[frac{partial z}{partial x}right]_{y=x^2}=frac{partial z}{partial x}frac{partial x}{partial x}+frac{partial z}{partial y}frac{partial y}{partial x}=frac{partial z}{partial x}+2xfrac{partial z}{partial y}.$$
Where I have clearly written down the restriction $y=x^2$.
$endgroup$
Nothing wrong. Just change it into
$$frac{d z}{d x}=frac{partial z}{partial x}frac{partial x}{partial x}+frac{partial z}{partial y}frac{partial y}{partial x}=frac{partial z}{partial x}+2xfrac{partial z}{partial y}$$
Note that that the first term is $frac{d z}{d x}$, which is different from $frac{partial z}{partial x}$. So they cannot cancel out. The partial derivatives do exist, but be careful not to mix it up with $frac{d z}{d x}$, which is NOT a partial derivative.
Actually, a better way to say this is that
$$left[frac{partial z}{partial x}right]_{y=x^2}=frac{partial z}{partial x}frac{partial x}{partial x}+frac{partial z}{partial y}frac{partial y}{partial x}=frac{partial z}{partial x}+2xfrac{partial z}{partial y}.$$
Where I have clearly written down the restriction $y=x^2$.
answered 1 hour ago
Holding ArthurHolding Arthur
1,360417
1,360417
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3172680%2ffinding-the-error-in-an-argument%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
My first question for you is why do you think this line of reasoning is incorrect? Did someone tell you it wasn't right?
$endgroup$
– BSplitter
2 hours ago
1
$begingroup$
I also will note that if $2xfrac{partial z}{partial y} =0$, then either $x=0$ or $frac{partial z}{partial y} =0$.
$endgroup$
– BSplitter
1 hour ago
$begingroup$
@BSplitter the problem itself poses this argument as incorrect, the object being to find out why
$endgroup$
– mathenthusiast
1 hour ago