Finding the error in an argumentChain rule notation for function with two variablesThe multivariable chain...

In Bayesian inference, why are some terms dropped from the posterior predictive?

Mathematica command that allows it to read my intentions

Am I breaking OOP practice with this architecture?

What are the G forces leaving Earth orbit?

Is there a hemisphere-neutral way of specifying a season?

Implication of namely

Knowledge-based authentication using Domain-driven Design in C#

What historical events would have to change in order to make 19th century "steampunk" technology possible?

How exploitable/balanced is this homebrew spell: Spell Permanency?

Ambiguity in the definition of entropy

Why do I get negative height?

Why was the shrink from 8″ made only to 5.25″ and not smaller (4″ or less)

What reasons are there for a Capitalist to oppose a 100% inheritance tax?

Theorists sure want true answers to this!

Does the Idaho Potato Commission associate potato skins with healthy eating?

Getting extremely large arrows with tikzcd

Do creatures with a listed speed of "0 ft., fly 30 ft. (hover)" ever touch the ground?

What is the fastest integer factorization to break RSA?

Partial fraction expansion confusion

How to coordinate airplane tickets?

Notepad++ delete until colon for every line with replace all

How to compactly explain secondary and tertiary characters without resorting to stereotypes?

What do you call someone who asks many questions?

Bullying boss launched a smear campaign and made me unemployable



Finding the error in an argument


Chain rule notation for function with two variablesThe multivariable chain rule and functions that depend on themselvesCalculate partial derivative $f'_x, f'_y, f'_z$ where $f(x, y, z) = x^{frac{y}{z}}$Simple Chain Rule for PartialsChain rule for partial derivativesQuestion regarding the proof of the directional derivativePartial derivative of a function w.r.t an argument that occurs multiple timesDerivative of function of matrices using the product ruleWhen to use Partial derivatives and chain rulePartial derivative with dependent variables













3












$begingroup$


If $z=f(x,y)$ and $y=x^2$, then by the chain rule



$frac{partial z}{partial x}=frac{partial z}{partial x}frac{partial x}{partial x}+frac{partial z}{partial y}frac{partial y}{partial x}=frac{partial z}{partial x}+2xfrac{partial z}{partial y}$



Therefore



$2xfrac{partial z}{partial y}=0$



and



$frac{partial z}{partial y}=0$



What is wrong with this argument?



I have a feeling that



1.) $x$ and $y$ do not have partial derivatives because they are single-variable, and



2.) $frac{partial z}{partial y}$ cannot be zero, because $y=x^2$ and therefore the derivative of any $y$ term exists.



How is my reasoning? I am pretty confused by this question.










share|cite|improve this question











$endgroup$












  • $begingroup$
    My first question for you is why do you think this line of reasoning is incorrect? Did someone tell you it wasn't right?
    $endgroup$
    – BSplitter
    2 hours ago








  • 1




    $begingroup$
    I also will note that if $2xfrac{partial z}{partial y} =0$, then either $x=0$ or $frac{partial z}{partial y} =0$.
    $endgroup$
    – BSplitter
    1 hour ago










  • $begingroup$
    @BSplitter the problem itself poses this argument as incorrect, the object being to find out why
    $endgroup$
    – mathenthusiast
    1 hour ago
















3












$begingroup$


If $z=f(x,y)$ and $y=x^2$, then by the chain rule



$frac{partial z}{partial x}=frac{partial z}{partial x}frac{partial x}{partial x}+frac{partial z}{partial y}frac{partial y}{partial x}=frac{partial z}{partial x}+2xfrac{partial z}{partial y}$



Therefore



$2xfrac{partial z}{partial y}=0$



and



$frac{partial z}{partial y}=0$



What is wrong with this argument?



I have a feeling that



1.) $x$ and $y$ do not have partial derivatives because they are single-variable, and



2.) $frac{partial z}{partial y}$ cannot be zero, because $y=x^2$ and therefore the derivative of any $y$ term exists.



How is my reasoning? I am pretty confused by this question.










share|cite|improve this question











$endgroup$












  • $begingroup$
    My first question for you is why do you think this line of reasoning is incorrect? Did someone tell you it wasn't right?
    $endgroup$
    – BSplitter
    2 hours ago








  • 1




    $begingroup$
    I also will note that if $2xfrac{partial z}{partial y} =0$, then either $x=0$ or $frac{partial z}{partial y} =0$.
    $endgroup$
    – BSplitter
    1 hour ago










  • $begingroup$
    @BSplitter the problem itself poses this argument as incorrect, the object being to find out why
    $endgroup$
    – mathenthusiast
    1 hour ago














3












3








3





$begingroup$


If $z=f(x,y)$ and $y=x^2$, then by the chain rule



$frac{partial z}{partial x}=frac{partial z}{partial x}frac{partial x}{partial x}+frac{partial z}{partial y}frac{partial y}{partial x}=frac{partial z}{partial x}+2xfrac{partial z}{partial y}$



Therefore



$2xfrac{partial z}{partial y}=0$



and



$frac{partial z}{partial y}=0$



What is wrong with this argument?



I have a feeling that



1.) $x$ and $y$ do not have partial derivatives because they are single-variable, and



2.) $frac{partial z}{partial y}$ cannot be zero, because $y=x^2$ and therefore the derivative of any $y$ term exists.



How is my reasoning? I am pretty confused by this question.










share|cite|improve this question











$endgroup$




If $z=f(x,y)$ and $y=x^2$, then by the chain rule



$frac{partial z}{partial x}=frac{partial z}{partial x}frac{partial x}{partial x}+frac{partial z}{partial y}frac{partial y}{partial x}=frac{partial z}{partial x}+2xfrac{partial z}{partial y}$



Therefore



$2xfrac{partial z}{partial y}=0$



and



$frac{partial z}{partial y}=0$



What is wrong with this argument?



I have a feeling that



1.) $x$ and $y$ do not have partial derivatives because they are single-variable, and



2.) $frac{partial z}{partial y}$ cannot be zero, because $y=x^2$ and therefore the derivative of any $y$ term exists.



How is my reasoning? I am pretty confused by this question.







calculus multivariable-calculus partial-derivative






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 2 hours ago







mathenthusiast

















asked 2 hours ago









mathenthusiastmathenthusiast

758




758












  • $begingroup$
    My first question for you is why do you think this line of reasoning is incorrect? Did someone tell you it wasn't right?
    $endgroup$
    – BSplitter
    2 hours ago








  • 1




    $begingroup$
    I also will note that if $2xfrac{partial z}{partial y} =0$, then either $x=0$ or $frac{partial z}{partial y} =0$.
    $endgroup$
    – BSplitter
    1 hour ago










  • $begingroup$
    @BSplitter the problem itself poses this argument as incorrect, the object being to find out why
    $endgroup$
    – mathenthusiast
    1 hour ago


















  • $begingroup$
    My first question for you is why do you think this line of reasoning is incorrect? Did someone tell you it wasn't right?
    $endgroup$
    – BSplitter
    2 hours ago








  • 1




    $begingroup$
    I also will note that if $2xfrac{partial z}{partial y} =0$, then either $x=0$ or $frac{partial z}{partial y} =0$.
    $endgroup$
    – BSplitter
    1 hour ago










  • $begingroup$
    @BSplitter the problem itself poses this argument as incorrect, the object being to find out why
    $endgroup$
    – mathenthusiast
    1 hour ago
















$begingroup$
My first question for you is why do you think this line of reasoning is incorrect? Did someone tell you it wasn't right?
$endgroup$
– BSplitter
2 hours ago






$begingroup$
My first question for you is why do you think this line of reasoning is incorrect? Did someone tell you it wasn't right?
$endgroup$
– BSplitter
2 hours ago






1




1




$begingroup$
I also will note that if $2xfrac{partial z}{partial y} =0$, then either $x=0$ or $frac{partial z}{partial y} =0$.
$endgroup$
– BSplitter
1 hour ago




$begingroup$
I also will note that if $2xfrac{partial z}{partial y} =0$, then either $x=0$ or $frac{partial z}{partial y} =0$.
$endgroup$
– BSplitter
1 hour ago












$begingroup$
@BSplitter the problem itself poses this argument as incorrect, the object being to find out why
$endgroup$
– mathenthusiast
1 hour ago




$begingroup$
@BSplitter the problem itself poses this argument as incorrect, the object being to find out why
$endgroup$
– mathenthusiast
1 hour ago










1 Answer
1






active

oldest

votes


















4












$begingroup$

Nothing wrong. Just change it into



$$frac{d z}{d x}=frac{partial z}{partial x}frac{partial x}{partial x}+frac{partial z}{partial y}frac{partial y}{partial x}=frac{partial z}{partial x}+2xfrac{partial z}{partial y}$$



Note that that the first term is $frac{d z}{d x}$, which is different from $frac{partial z}{partial x}$. So they cannot cancel out. The partial derivatives do exist, but be careful not to mix it up with $frac{d z}{d x}$, which is NOT a partial derivative.



Actually, a better way to say this is that



$$left[frac{partial z}{partial x}right]_{y=x^2}=frac{partial z}{partial x}frac{partial x}{partial x}+frac{partial z}{partial y}frac{partial y}{partial x}=frac{partial z}{partial x}+2xfrac{partial z}{partial y}.$$



Where I have clearly written down the restriction $y=x^2$.






share|cite|improve this answer









$endgroup$














    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3172680%2ffinding-the-error-in-an-argument%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    4












    $begingroup$

    Nothing wrong. Just change it into



    $$frac{d z}{d x}=frac{partial z}{partial x}frac{partial x}{partial x}+frac{partial z}{partial y}frac{partial y}{partial x}=frac{partial z}{partial x}+2xfrac{partial z}{partial y}$$



    Note that that the first term is $frac{d z}{d x}$, which is different from $frac{partial z}{partial x}$. So they cannot cancel out. The partial derivatives do exist, but be careful not to mix it up with $frac{d z}{d x}$, which is NOT a partial derivative.



    Actually, a better way to say this is that



    $$left[frac{partial z}{partial x}right]_{y=x^2}=frac{partial z}{partial x}frac{partial x}{partial x}+frac{partial z}{partial y}frac{partial y}{partial x}=frac{partial z}{partial x}+2xfrac{partial z}{partial y}.$$



    Where I have clearly written down the restriction $y=x^2$.






    share|cite|improve this answer









    $endgroup$


















      4












      $begingroup$

      Nothing wrong. Just change it into



      $$frac{d z}{d x}=frac{partial z}{partial x}frac{partial x}{partial x}+frac{partial z}{partial y}frac{partial y}{partial x}=frac{partial z}{partial x}+2xfrac{partial z}{partial y}$$



      Note that that the first term is $frac{d z}{d x}$, which is different from $frac{partial z}{partial x}$. So they cannot cancel out. The partial derivatives do exist, but be careful not to mix it up with $frac{d z}{d x}$, which is NOT a partial derivative.



      Actually, a better way to say this is that



      $$left[frac{partial z}{partial x}right]_{y=x^2}=frac{partial z}{partial x}frac{partial x}{partial x}+frac{partial z}{partial y}frac{partial y}{partial x}=frac{partial z}{partial x}+2xfrac{partial z}{partial y}.$$



      Where I have clearly written down the restriction $y=x^2$.






      share|cite|improve this answer









      $endgroup$
















        4












        4








        4





        $begingroup$

        Nothing wrong. Just change it into



        $$frac{d z}{d x}=frac{partial z}{partial x}frac{partial x}{partial x}+frac{partial z}{partial y}frac{partial y}{partial x}=frac{partial z}{partial x}+2xfrac{partial z}{partial y}$$



        Note that that the first term is $frac{d z}{d x}$, which is different from $frac{partial z}{partial x}$. So they cannot cancel out. The partial derivatives do exist, but be careful not to mix it up with $frac{d z}{d x}$, which is NOT a partial derivative.



        Actually, a better way to say this is that



        $$left[frac{partial z}{partial x}right]_{y=x^2}=frac{partial z}{partial x}frac{partial x}{partial x}+frac{partial z}{partial y}frac{partial y}{partial x}=frac{partial z}{partial x}+2xfrac{partial z}{partial y}.$$



        Where I have clearly written down the restriction $y=x^2$.






        share|cite|improve this answer









        $endgroup$



        Nothing wrong. Just change it into



        $$frac{d z}{d x}=frac{partial z}{partial x}frac{partial x}{partial x}+frac{partial z}{partial y}frac{partial y}{partial x}=frac{partial z}{partial x}+2xfrac{partial z}{partial y}$$



        Note that that the first term is $frac{d z}{d x}$, which is different from $frac{partial z}{partial x}$. So they cannot cancel out. The partial derivatives do exist, but be careful not to mix it up with $frac{d z}{d x}$, which is NOT a partial derivative.



        Actually, a better way to say this is that



        $$left[frac{partial z}{partial x}right]_{y=x^2}=frac{partial z}{partial x}frac{partial x}{partial x}+frac{partial z}{partial y}frac{partial y}{partial x}=frac{partial z}{partial x}+2xfrac{partial z}{partial y}.$$



        Where I have clearly written down the restriction $y=x^2$.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered 1 hour ago









        Holding ArthurHolding Arthur

        1,360417




        1,360417






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3172680%2ffinding-the-error-in-an-argument%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            El tren de la libertad Índice Antecedentes "Porque yo decido" Desarrollo de la...

            Castillo d'Acher Características Menú de navegación

            Puerta de Hutt Referencias Enlaces externos Menú de navegación15°58′00″S 5°42′00″O /...