The inductive proof of $sum_{k=1}^n frac k{k+1} leq n - frac1{n+1}$ is unclearWhat is the second principle of...

Which preposition to use with beauty? Of or with?

Issues with new Macs: Hardware makes them difficult for me to use. What options might be available in the future?

Everyone is beautiful

Why avoid shared user accounts?

Dilemma of explaining to interviewer that he is the reason for declining second interview

Numbers of Exaggeration in Talmud

High pressure canisters of air as gun-less projectiles

How to interpret this PubChem record of L-Alanine

Why do members of Congress in committee hearings ask witnesses the same question multiple times?

Can you earn endless XP using a Flameskull and its self-revival feature?

Is there a kind of consulting service in Buddhism?

How experienced do I need to be to go on a photography workshop?

math reviews in "Zentralblatt für Mathematik und ihre Grenzgebiete"

If I delete my router's history can my ISP still provide it to my parents?

When the voltage is increased does the speed of electrons increase or does the electron density increase?

How do I add a variable to this curl command?

Superposition of light waves of different colors

Am I a Rude Number?

Eww, those bytes are gross

How do you funnel food off a cutting board?

How would an AI self awareness kill switch work?

Can the Count of Monte Cristo's calculation of poison dosage be explained?

Can I retract my name from an already published manuscript?

Are Giants classified as Beasts or Beings?



The inductive proof of $sum_{k=1}^n frac k{k+1} leq n - frac1{n+1}$ is unclear


What is the second principle of finite induction?Proving Inequalities using InductionFrobenius coin problem, 5 and 9Practice Examples of Proofs by Induction, Direct/Indirect MethodInductive proof on rShowing a sequence defined recursively is convergentInductive proof, algebra stepProving that $n! leq 2*(frac{n}2)^n$Proof by Mathematical Induction for Inequalityinductive proof for $sum_{i=0}^{2^n} 1/(i+1) leq n + 1$













3












$begingroup$


Prove by induction of $n$



$$sum_{k=1}^n frac k{k+1} leq n - frac1{n+1}$$





begin{align}sum_1^{n+1}frac k{k+1}&leq n-frac 1{n+1}+frac{n+1}{n+2}\&=n-frac 1{n+1}+1-frac 1{n+2}\&=(n+1)-frac{2(n+2)-1}{(n+1)(n+2)}\&=(n+1)-frac 2{n+1}+frac 1{(n+1)(n+2)}\&leq (n+1)-frac 2{n+2}+frac 1{n+2}=(n+1)-frac 1{n+2}end{align}





Now I'm a beginner at induction, and couldn't follow this solution very well.I was hoping someone could help break down the steps and explain them.



Questions




  1. How the inequality works


Wouldn't



$$sum_1^{n+1}frac k{k+1}leq n-frac 1{n+1}$$



become



$$sum_1^{n+1}frac k{k+1} +frac{n+1}{n+2} leq n-frac 1{n+1}$$



and then



$$sum_1^{n+1}frac k{k+1}leq n-frac 1{n+1}-frac{n+1}{n+2}$$



instead of



$$sum_1^{n+1}frac k{k+1}leq n-frac 1{n+1}+frac{n+1}{n+2}$$






  1. My largest issue with induction, is when the inequalities change like in the first and last step. I don't understand how that works. Any explanation, or good resources to help with my understanding of how the inequality changes when performing induction would be helpful.










share|cite|improve this question











$endgroup$

















    3












    $begingroup$


    Prove by induction of $n$



    $$sum_{k=1}^n frac k{k+1} leq n - frac1{n+1}$$





    begin{align}sum_1^{n+1}frac k{k+1}&leq n-frac 1{n+1}+frac{n+1}{n+2}\&=n-frac 1{n+1}+1-frac 1{n+2}\&=(n+1)-frac{2(n+2)-1}{(n+1)(n+2)}\&=(n+1)-frac 2{n+1}+frac 1{(n+1)(n+2)}\&leq (n+1)-frac 2{n+2}+frac 1{n+2}=(n+1)-frac 1{n+2}end{align}





    Now I'm a beginner at induction, and couldn't follow this solution very well.I was hoping someone could help break down the steps and explain them.



    Questions




    1. How the inequality works


    Wouldn't



    $$sum_1^{n+1}frac k{k+1}leq n-frac 1{n+1}$$



    become



    $$sum_1^{n+1}frac k{k+1} +frac{n+1}{n+2} leq n-frac 1{n+1}$$



    and then



    $$sum_1^{n+1}frac k{k+1}leq n-frac 1{n+1}-frac{n+1}{n+2}$$



    instead of



    $$sum_1^{n+1}frac k{k+1}leq n-frac 1{n+1}+frac{n+1}{n+2}$$






    1. My largest issue with induction, is when the inequalities change like in the first and last step. I don't understand how that works. Any explanation, or good resources to help with my understanding of how the inequality changes when performing induction would be helpful.










    share|cite|improve this question











    $endgroup$















      3












      3








      3





      $begingroup$


      Prove by induction of $n$



      $$sum_{k=1}^n frac k{k+1} leq n - frac1{n+1}$$





      begin{align}sum_1^{n+1}frac k{k+1}&leq n-frac 1{n+1}+frac{n+1}{n+2}\&=n-frac 1{n+1}+1-frac 1{n+2}\&=(n+1)-frac{2(n+2)-1}{(n+1)(n+2)}\&=(n+1)-frac 2{n+1}+frac 1{(n+1)(n+2)}\&leq (n+1)-frac 2{n+2}+frac 1{n+2}=(n+1)-frac 1{n+2}end{align}





      Now I'm a beginner at induction, and couldn't follow this solution very well.I was hoping someone could help break down the steps and explain them.



      Questions




      1. How the inequality works


      Wouldn't



      $$sum_1^{n+1}frac k{k+1}leq n-frac 1{n+1}$$



      become



      $$sum_1^{n+1}frac k{k+1} +frac{n+1}{n+2} leq n-frac 1{n+1}$$



      and then



      $$sum_1^{n+1}frac k{k+1}leq n-frac 1{n+1}-frac{n+1}{n+2}$$



      instead of



      $$sum_1^{n+1}frac k{k+1}leq n-frac 1{n+1}+frac{n+1}{n+2}$$






      1. My largest issue with induction, is when the inequalities change like in the first and last step. I don't understand how that works. Any explanation, or good resources to help with my understanding of how the inequality changes when performing induction would be helpful.










      share|cite|improve this question











      $endgroup$




      Prove by induction of $n$



      $$sum_{k=1}^n frac k{k+1} leq n - frac1{n+1}$$





      begin{align}sum_1^{n+1}frac k{k+1}&leq n-frac 1{n+1}+frac{n+1}{n+2}\&=n-frac 1{n+1}+1-frac 1{n+2}\&=(n+1)-frac{2(n+2)-1}{(n+1)(n+2)}\&=(n+1)-frac 2{n+1}+frac 1{(n+1)(n+2)}\&leq (n+1)-frac 2{n+2}+frac 1{n+2}=(n+1)-frac 1{n+2}end{align}





      Now I'm a beginner at induction, and couldn't follow this solution very well.I was hoping someone could help break down the steps and explain them.



      Questions




      1. How the inequality works


      Wouldn't



      $$sum_1^{n+1}frac k{k+1}leq n-frac 1{n+1}$$



      become



      $$sum_1^{n+1}frac k{k+1} +frac{n+1}{n+2} leq n-frac 1{n+1}$$



      and then



      $$sum_1^{n+1}frac k{k+1}leq n-frac 1{n+1}-frac{n+1}{n+2}$$



      instead of



      $$sum_1^{n+1}frac k{k+1}leq n-frac 1{n+1}+frac{n+1}{n+2}$$






      1. My largest issue with induction, is when the inequalities change like in the first and last step. I don't understand how that works. Any explanation, or good resources to help with my understanding of how the inequality changes when performing induction would be helpful.







      discrete-mathematics induction






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited 6 hours ago









      Asaf Karagila

      305k33435766




      305k33435766










      asked 12 hours ago









      BrownieBrownie

      997




      997






















          3 Answers
          3






          active

          oldest

          votes


















          10












          $begingroup$

          Remember that in induction proofs, we start by assuming that the claim we're trying to prove is true for $n$, and then conclude that it must also be true for $n + 1$. In this case, we start with the induction assumption
          $$sum_{k = 1}^{n} frac{k}{k + 1} leq n - frac{1}{n + 1},$$
          and want to end with the conclusion that $$sum_{k = 1}^{n + 1} frac{k}{k + 1} leq n + 1 - frac{1}{n + 2} .$$
          Here's the argument written out in a bit more detail with commentary on each step.
          begin{align*}
          sum_{k = 1}^{n + 1} frac{k}{k + 1} & = frac{n + 1}{n + 2} + sum_{k = 1}^{n} frac{k}{k + 1} & textrm{ (just writing out the sum)} \
          & leq frac{n + 1}{n + 2} + n - frac{1}{n + 1} & textrm{ (applying the induction hypothesis)} \
          & = 1 - frac{1}{n + 2} + n - frac{1}{n + 1} & textrm{ (rewriting $frac{n+ 1}{n + 2}$ as $frac{n + 2 - 1}{n + 2} = 1 - frac{1}{n + 2}$)} \
          & = n + 1 - frac{1}{n + 1} - frac{1}{n + 2} & textrm{ (regrouping)} \
          & = n + 1 - frac{(n + 2) + (n + 1)}{(n + 2)(n + 1)} & textrm{ (combining fractions)} \
          & = n + 1 - frac{2(n + 2) - 1}{(n + 1)(n + 2)} & textrm{ (regrouping the numerator)} \
          & = n + 1 - frac{2(n + 2)}{(n + 1)(n + 2)} + frac{1}{(n + 1)(n + 2)} & textrm{ (breaking the fraction back apart)} \
          & = n + 1 - frac{2}{n + 1} + frac{1}{(n + 1)(n + 2)} & textrm{ (simplifying the fraction)} \
          & leq n + 1 - frac{2}{n + 2} + frac{1}{(n + 1)(n + 2)} & textrm{ (we slightly modified the second-to-last summand)} \
          & leq n + 1 - frac{2}{n + 2} + frac{1}{n + 2} & textrm{ (modifying the last summand)} \
          & = n + 1 - frac{1}{n + 2} & textrm{ (combining the fractions)} .
          end{align*}

          So in summary, we began with the assumption that the claim held for $n$, and through some arithmetic trickery concluded that it therefore held for $n + 1$.






          share|cite|improve this answer











          $endgroup$









          • 1




            $begingroup$
            This is an amazing break down, could explain your second-to-last and third-to-last steps where you modify the summand? Oh I think I might understand, is it to make the inequality <= ?
            $endgroup$
            – Brownie
            12 hours ago








          • 1




            $begingroup$
            @Brownie In the third-to-last step, we observe that $n + 1 leq n + 2$, so $frac{2}{n + 1} geq frac{2}{n + 2}$, so $- frac{2}{n + 1} leq - frac{2}{n + 2}$. For the second-to-last step, we can see that $frac{1}{n + 2} = frac{n + 1}{(n + 1)(n + 2)} = (n + 1) frac{1}{(n + 1)(n + 2)} geq frac{1}{(n + 1)(n + 2)}$.
            $endgroup$
            – AJY
            12 hours ago








          • 1




            $begingroup$
            So is this a step you saw you could implement to get the final equal to $ n + 1 - frac{1}{n + 2} $ ? Or is there something that would push you towards doing this?
            $endgroup$
            – Brownie
            12 hours ago








          • 2




            $begingroup$
            @Brownie The short answer is that these kinds of tricks come easier with practice. We wanted to get to a very particular estimate, and just kinda made what estimates we could until it fell out just right. Sometimes (often) it just takes trial and error.
            $endgroup$
            – AJY
            12 hours ago



















          2












          $begingroup$

          If $aleq b $, then $a+cleq b+c $ for any $cin Bbb R $. By assumption, we have $$sum_{k=1}^{n}frac k{k+1}leq n-frac 1{n+1}.$$ Now add $dfrac{n+1}{n+2}$ on both sides, i.e., $$sum_{k=1}^{n}frac k{k+1}+frac{n+1}{n+2}leq n-frac 1{n+1}+frac{n+1}{n+2}.$$ Note that $$sum_{k=1}^{n}frac k{k+1}+frac{n+1}{n+2}=sum_{k=1}^{n+1}frac k{k+1}.$$ Hence we have $$sum_{k=1}^{n+1}frac k{k+1}leq n-frac 1{n+1}+frac{n+1}{n+2}.$$






          share|cite|improve this answer











          $endgroup$





















            1












            $begingroup$

            Regarding the first inequality you're asking about, they are actually adding the term $frac{n+1}{n+2}$ to both sides, but on the left hand side it is added by increasing the upper limit in the sum by $1$, and to not change the inequality you have to add $frac{n+1}{n+2}$ to the right hand side.



            The subsequent steps in the proof you posted are just rearrangements of fractions using algebra, nothing actually changes there until the last line. Then they just use the fact that $frac{1}{(n+1)(n+2)} leq frac{1}{n+2}$






            share|cite|improve this answer









            $endgroup$













            • $begingroup$
              Cool just last quick question, for the left hand side if instead of increasing the upper limit of the sum by 1, I added $frac{n+1}{n+2}$ to both sides, that would be the same?
              $endgroup$
              – Brownie
              12 hours ago










            • $begingroup$
              Yes, that would be the same.
              $endgroup$
              – Thomas Fjærvik
              12 hours ago











            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3133089%2fthe-inductive-proof-of-sum-k-1n-frac-kk1-leq-n-frac1n1-is-uncle%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            3 Answers
            3






            active

            oldest

            votes








            3 Answers
            3






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            10












            $begingroup$

            Remember that in induction proofs, we start by assuming that the claim we're trying to prove is true for $n$, and then conclude that it must also be true for $n + 1$. In this case, we start with the induction assumption
            $$sum_{k = 1}^{n} frac{k}{k + 1} leq n - frac{1}{n + 1},$$
            and want to end with the conclusion that $$sum_{k = 1}^{n + 1} frac{k}{k + 1} leq n + 1 - frac{1}{n + 2} .$$
            Here's the argument written out in a bit more detail with commentary on each step.
            begin{align*}
            sum_{k = 1}^{n + 1} frac{k}{k + 1} & = frac{n + 1}{n + 2} + sum_{k = 1}^{n} frac{k}{k + 1} & textrm{ (just writing out the sum)} \
            & leq frac{n + 1}{n + 2} + n - frac{1}{n + 1} & textrm{ (applying the induction hypothesis)} \
            & = 1 - frac{1}{n + 2} + n - frac{1}{n + 1} & textrm{ (rewriting $frac{n+ 1}{n + 2}$ as $frac{n + 2 - 1}{n + 2} = 1 - frac{1}{n + 2}$)} \
            & = n + 1 - frac{1}{n + 1} - frac{1}{n + 2} & textrm{ (regrouping)} \
            & = n + 1 - frac{(n + 2) + (n + 1)}{(n + 2)(n + 1)} & textrm{ (combining fractions)} \
            & = n + 1 - frac{2(n + 2) - 1}{(n + 1)(n + 2)} & textrm{ (regrouping the numerator)} \
            & = n + 1 - frac{2(n + 2)}{(n + 1)(n + 2)} + frac{1}{(n + 1)(n + 2)} & textrm{ (breaking the fraction back apart)} \
            & = n + 1 - frac{2}{n + 1} + frac{1}{(n + 1)(n + 2)} & textrm{ (simplifying the fraction)} \
            & leq n + 1 - frac{2}{n + 2} + frac{1}{(n + 1)(n + 2)} & textrm{ (we slightly modified the second-to-last summand)} \
            & leq n + 1 - frac{2}{n + 2} + frac{1}{n + 2} & textrm{ (modifying the last summand)} \
            & = n + 1 - frac{1}{n + 2} & textrm{ (combining the fractions)} .
            end{align*}

            So in summary, we began with the assumption that the claim held for $n$, and through some arithmetic trickery concluded that it therefore held for $n + 1$.






            share|cite|improve this answer











            $endgroup$









            • 1




              $begingroup$
              This is an amazing break down, could explain your second-to-last and third-to-last steps where you modify the summand? Oh I think I might understand, is it to make the inequality <= ?
              $endgroup$
              – Brownie
              12 hours ago








            • 1




              $begingroup$
              @Brownie In the third-to-last step, we observe that $n + 1 leq n + 2$, so $frac{2}{n + 1} geq frac{2}{n + 2}$, so $- frac{2}{n + 1} leq - frac{2}{n + 2}$. For the second-to-last step, we can see that $frac{1}{n + 2} = frac{n + 1}{(n + 1)(n + 2)} = (n + 1) frac{1}{(n + 1)(n + 2)} geq frac{1}{(n + 1)(n + 2)}$.
              $endgroup$
              – AJY
              12 hours ago








            • 1




              $begingroup$
              So is this a step you saw you could implement to get the final equal to $ n + 1 - frac{1}{n + 2} $ ? Or is there something that would push you towards doing this?
              $endgroup$
              – Brownie
              12 hours ago








            • 2




              $begingroup$
              @Brownie The short answer is that these kinds of tricks come easier with practice. We wanted to get to a very particular estimate, and just kinda made what estimates we could until it fell out just right. Sometimes (often) it just takes trial and error.
              $endgroup$
              – AJY
              12 hours ago
















            10












            $begingroup$

            Remember that in induction proofs, we start by assuming that the claim we're trying to prove is true for $n$, and then conclude that it must also be true for $n + 1$. In this case, we start with the induction assumption
            $$sum_{k = 1}^{n} frac{k}{k + 1} leq n - frac{1}{n + 1},$$
            and want to end with the conclusion that $$sum_{k = 1}^{n + 1} frac{k}{k + 1} leq n + 1 - frac{1}{n + 2} .$$
            Here's the argument written out in a bit more detail with commentary on each step.
            begin{align*}
            sum_{k = 1}^{n + 1} frac{k}{k + 1} & = frac{n + 1}{n + 2} + sum_{k = 1}^{n} frac{k}{k + 1} & textrm{ (just writing out the sum)} \
            & leq frac{n + 1}{n + 2} + n - frac{1}{n + 1} & textrm{ (applying the induction hypothesis)} \
            & = 1 - frac{1}{n + 2} + n - frac{1}{n + 1} & textrm{ (rewriting $frac{n+ 1}{n + 2}$ as $frac{n + 2 - 1}{n + 2} = 1 - frac{1}{n + 2}$)} \
            & = n + 1 - frac{1}{n + 1} - frac{1}{n + 2} & textrm{ (regrouping)} \
            & = n + 1 - frac{(n + 2) + (n + 1)}{(n + 2)(n + 1)} & textrm{ (combining fractions)} \
            & = n + 1 - frac{2(n + 2) - 1}{(n + 1)(n + 2)} & textrm{ (regrouping the numerator)} \
            & = n + 1 - frac{2(n + 2)}{(n + 1)(n + 2)} + frac{1}{(n + 1)(n + 2)} & textrm{ (breaking the fraction back apart)} \
            & = n + 1 - frac{2}{n + 1} + frac{1}{(n + 1)(n + 2)} & textrm{ (simplifying the fraction)} \
            & leq n + 1 - frac{2}{n + 2} + frac{1}{(n + 1)(n + 2)} & textrm{ (we slightly modified the second-to-last summand)} \
            & leq n + 1 - frac{2}{n + 2} + frac{1}{n + 2} & textrm{ (modifying the last summand)} \
            & = n + 1 - frac{1}{n + 2} & textrm{ (combining the fractions)} .
            end{align*}

            So in summary, we began with the assumption that the claim held for $n$, and through some arithmetic trickery concluded that it therefore held for $n + 1$.






            share|cite|improve this answer











            $endgroup$









            • 1




              $begingroup$
              This is an amazing break down, could explain your second-to-last and third-to-last steps where you modify the summand? Oh I think I might understand, is it to make the inequality <= ?
              $endgroup$
              – Brownie
              12 hours ago








            • 1




              $begingroup$
              @Brownie In the third-to-last step, we observe that $n + 1 leq n + 2$, so $frac{2}{n + 1} geq frac{2}{n + 2}$, so $- frac{2}{n + 1} leq - frac{2}{n + 2}$. For the second-to-last step, we can see that $frac{1}{n + 2} = frac{n + 1}{(n + 1)(n + 2)} = (n + 1) frac{1}{(n + 1)(n + 2)} geq frac{1}{(n + 1)(n + 2)}$.
              $endgroup$
              – AJY
              12 hours ago








            • 1




              $begingroup$
              So is this a step you saw you could implement to get the final equal to $ n + 1 - frac{1}{n + 2} $ ? Or is there something that would push you towards doing this?
              $endgroup$
              – Brownie
              12 hours ago








            • 2




              $begingroup$
              @Brownie The short answer is that these kinds of tricks come easier with practice. We wanted to get to a very particular estimate, and just kinda made what estimates we could until it fell out just right. Sometimes (often) it just takes trial and error.
              $endgroup$
              – AJY
              12 hours ago














            10












            10








            10





            $begingroup$

            Remember that in induction proofs, we start by assuming that the claim we're trying to prove is true for $n$, and then conclude that it must also be true for $n + 1$. In this case, we start with the induction assumption
            $$sum_{k = 1}^{n} frac{k}{k + 1} leq n - frac{1}{n + 1},$$
            and want to end with the conclusion that $$sum_{k = 1}^{n + 1} frac{k}{k + 1} leq n + 1 - frac{1}{n + 2} .$$
            Here's the argument written out in a bit more detail with commentary on each step.
            begin{align*}
            sum_{k = 1}^{n + 1} frac{k}{k + 1} & = frac{n + 1}{n + 2} + sum_{k = 1}^{n} frac{k}{k + 1} & textrm{ (just writing out the sum)} \
            & leq frac{n + 1}{n + 2} + n - frac{1}{n + 1} & textrm{ (applying the induction hypothesis)} \
            & = 1 - frac{1}{n + 2} + n - frac{1}{n + 1} & textrm{ (rewriting $frac{n+ 1}{n + 2}$ as $frac{n + 2 - 1}{n + 2} = 1 - frac{1}{n + 2}$)} \
            & = n + 1 - frac{1}{n + 1} - frac{1}{n + 2} & textrm{ (regrouping)} \
            & = n + 1 - frac{(n + 2) + (n + 1)}{(n + 2)(n + 1)} & textrm{ (combining fractions)} \
            & = n + 1 - frac{2(n + 2) - 1}{(n + 1)(n + 2)} & textrm{ (regrouping the numerator)} \
            & = n + 1 - frac{2(n + 2)}{(n + 1)(n + 2)} + frac{1}{(n + 1)(n + 2)} & textrm{ (breaking the fraction back apart)} \
            & = n + 1 - frac{2}{n + 1} + frac{1}{(n + 1)(n + 2)} & textrm{ (simplifying the fraction)} \
            & leq n + 1 - frac{2}{n + 2} + frac{1}{(n + 1)(n + 2)} & textrm{ (we slightly modified the second-to-last summand)} \
            & leq n + 1 - frac{2}{n + 2} + frac{1}{n + 2} & textrm{ (modifying the last summand)} \
            & = n + 1 - frac{1}{n + 2} & textrm{ (combining the fractions)} .
            end{align*}

            So in summary, we began with the assumption that the claim held for $n$, and through some arithmetic trickery concluded that it therefore held for $n + 1$.






            share|cite|improve this answer











            $endgroup$



            Remember that in induction proofs, we start by assuming that the claim we're trying to prove is true for $n$, and then conclude that it must also be true for $n + 1$. In this case, we start with the induction assumption
            $$sum_{k = 1}^{n} frac{k}{k + 1} leq n - frac{1}{n + 1},$$
            and want to end with the conclusion that $$sum_{k = 1}^{n + 1} frac{k}{k + 1} leq n + 1 - frac{1}{n + 2} .$$
            Here's the argument written out in a bit more detail with commentary on each step.
            begin{align*}
            sum_{k = 1}^{n + 1} frac{k}{k + 1} & = frac{n + 1}{n + 2} + sum_{k = 1}^{n} frac{k}{k + 1} & textrm{ (just writing out the sum)} \
            & leq frac{n + 1}{n + 2} + n - frac{1}{n + 1} & textrm{ (applying the induction hypothesis)} \
            & = 1 - frac{1}{n + 2} + n - frac{1}{n + 1} & textrm{ (rewriting $frac{n+ 1}{n + 2}$ as $frac{n + 2 - 1}{n + 2} = 1 - frac{1}{n + 2}$)} \
            & = n + 1 - frac{1}{n + 1} - frac{1}{n + 2} & textrm{ (regrouping)} \
            & = n + 1 - frac{(n + 2) + (n + 1)}{(n + 2)(n + 1)} & textrm{ (combining fractions)} \
            & = n + 1 - frac{2(n + 2) - 1}{(n + 1)(n + 2)} & textrm{ (regrouping the numerator)} \
            & = n + 1 - frac{2(n + 2)}{(n + 1)(n + 2)} + frac{1}{(n + 1)(n + 2)} & textrm{ (breaking the fraction back apart)} \
            & = n + 1 - frac{2}{n + 1} + frac{1}{(n + 1)(n + 2)} & textrm{ (simplifying the fraction)} \
            & leq n + 1 - frac{2}{n + 2} + frac{1}{(n + 1)(n + 2)} & textrm{ (we slightly modified the second-to-last summand)} \
            & leq n + 1 - frac{2}{n + 2} + frac{1}{n + 2} & textrm{ (modifying the last summand)} \
            & = n + 1 - frac{1}{n + 2} & textrm{ (combining the fractions)} .
            end{align*}

            So in summary, we began with the assumption that the claim held for $n$, and through some arithmetic trickery concluded that it therefore held for $n + 1$.







            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited 12 hours ago

























            answered 12 hours ago









            AJYAJY

            4,25521129




            4,25521129








            • 1




              $begingroup$
              This is an amazing break down, could explain your second-to-last and third-to-last steps where you modify the summand? Oh I think I might understand, is it to make the inequality <= ?
              $endgroup$
              – Brownie
              12 hours ago








            • 1




              $begingroup$
              @Brownie In the third-to-last step, we observe that $n + 1 leq n + 2$, so $frac{2}{n + 1} geq frac{2}{n + 2}$, so $- frac{2}{n + 1} leq - frac{2}{n + 2}$. For the second-to-last step, we can see that $frac{1}{n + 2} = frac{n + 1}{(n + 1)(n + 2)} = (n + 1) frac{1}{(n + 1)(n + 2)} geq frac{1}{(n + 1)(n + 2)}$.
              $endgroup$
              – AJY
              12 hours ago








            • 1




              $begingroup$
              So is this a step you saw you could implement to get the final equal to $ n + 1 - frac{1}{n + 2} $ ? Or is there something that would push you towards doing this?
              $endgroup$
              – Brownie
              12 hours ago








            • 2




              $begingroup$
              @Brownie The short answer is that these kinds of tricks come easier with practice. We wanted to get to a very particular estimate, and just kinda made what estimates we could until it fell out just right. Sometimes (often) it just takes trial and error.
              $endgroup$
              – AJY
              12 hours ago














            • 1




              $begingroup$
              This is an amazing break down, could explain your second-to-last and third-to-last steps where you modify the summand? Oh I think I might understand, is it to make the inequality <= ?
              $endgroup$
              – Brownie
              12 hours ago








            • 1




              $begingroup$
              @Brownie In the third-to-last step, we observe that $n + 1 leq n + 2$, so $frac{2}{n + 1} geq frac{2}{n + 2}$, so $- frac{2}{n + 1} leq - frac{2}{n + 2}$. For the second-to-last step, we can see that $frac{1}{n + 2} = frac{n + 1}{(n + 1)(n + 2)} = (n + 1) frac{1}{(n + 1)(n + 2)} geq frac{1}{(n + 1)(n + 2)}$.
              $endgroup$
              – AJY
              12 hours ago








            • 1




              $begingroup$
              So is this a step you saw you could implement to get the final equal to $ n + 1 - frac{1}{n + 2} $ ? Or is there something that would push you towards doing this?
              $endgroup$
              – Brownie
              12 hours ago








            • 2




              $begingroup$
              @Brownie The short answer is that these kinds of tricks come easier with practice. We wanted to get to a very particular estimate, and just kinda made what estimates we could until it fell out just right. Sometimes (often) it just takes trial and error.
              $endgroup$
              – AJY
              12 hours ago








            1




            1




            $begingroup$
            This is an amazing break down, could explain your second-to-last and third-to-last steps where you modify the summand? Oh I think I might understand, is it to make the inequality <= ?
            $endgroup$
            – Brownie
            12 hours ago






            $begingroup$
            This is an amazing break down, could explain your second-to-last and third-to-last steps where you modify the summand? Oh I think I might understand, is it to make the inequality <= ?
            $endgroup$
            – Brownie
            12 hours ago






            1




            1




            $begingroup$
            @Brownie In the third-to-last step, we observe that $n + 1 leq n + 2$, so $frac{2}{n + 1} geq frac{2}{n + 2}$, so $- frac{2}{n + 1} leq - frac{2}{n + 2}$. For the second-to-last step, we can see that $frac{1}{n + 2} = frac{n + 1}{(n + 1)(n + 2)} = (n + 1) frac{1}{(n + 1)(n + 2)} geq frac{1}{(n + 1)(n + 2)}$.
            $endgroup$
            – AJY
            12 hours ago






            $begingroup$
            @Brownie In the third-to-last step, we observe that $n + 1 leq n + 2$, so $frac{2}{n + 1} geq frac{2}{n + 2}$, so $- frac{2}{n + 1} leq - frac{2}{n + 2}$. For the second-to-last step, we can see that $frac{1}{n + 2} = frac{n + 1}{(n + 1)(n + 2)} = (n + 1) frac{1}{(n + 1)(n + 2)} geq frac{1}{(n + 1)(n + 2)}$.
            $endgroup$
            – AJY
            12 hours ago






            1




            1




            $begingroup$
            So is this a step you saw you could implement to get the final equal to $ n + 1 - frac{1}{n + 2} $ ? Or is there something that would push you towards doing this?
            $endgroup$
            – Brownie
            12 hours ago






            $begingroup$
            So is this a step you saw you could implement to get the final equal to $ n + 1 - frac{1}{n + 2} $ ? Or is there something that would push you towards doing this?
            $endgroup$
            – Brownie
            12 hours ago






            2




            2




            $begingroup$
            @Brownie The short answer is that these kinds of tricks come easier with practice. We wanted to get to a very particular estimate, and just kinda made what estimates we could until it fell out just right. Sometimes (often) it just takes trial and error.
            $endgroup$
            – AJY
            12 hours ago




            $begingroup$
            @Brownie The short answer is that these kinds of tricks come easier with practice. We wanted to get to a very particular estimate, and just kinda made what estimates we could until it fell out just right. Sometimes (often) it just takes trial and error.
            $endgroup$
            – AJY
            12 hours ago











            2












            $begingroup$

            If $aleq b $, then $a+cleq b+c $ for any $cin Bbb R $. By assumption, we have $$sum_{k=1}^{n}frac k{k+1}leq n-frac 1{n+1}.$$ Now add $dfrac{n+1}{n+2}$ on both sides, i.e., $$sum_{k=1}^{n}frac k{k+1}+frac{n+1}{n+2}leq n-frac 1{n+1}+frac{n+1}{n+2}.$$ Note that $$sum_{k=1}^{n}frac k{k+1}+frac{n+1}{n+2}=sum_{k=1}^{n+1}frac k{k+1}.$$ Hence we have $$sum_{k=1}^{n+1}frac k{k+1}leq n-frac 1{n+1}+frac{n+1}{n+2}.$$






            share|cite|improve this answer











            $endgroup$


















              2












              $begingroup$

              If $aleq b $, then $a+cleq b+c $ for any $cin Bbb R $. By assumption, we have $$sum_{k=1}^{n}frac k{k+1}leq n-frac 1{n+1}.$$ Now add $dfrac{n+1}{n+2}$ on both sides, i.e., $$sum_{k=1}^{n}frac k{k+1}+frac{n+1}{n+2}leq n-frac 1{n+1}+frac{n+1}{n+2}.$$ Note that $$sum_{k=1}^{n}frac k{k+1}+frac{n+1}{n+2}=sum_{k=1}^{n+1}frac k{k+1}.$$ Hence we have $$sum_{k=1}^{n+1}frac k{k+1}leq n-frac 1{n+1}+frac{n+1}{n+2}.$$






              share|cite|improve this answer











              $endgroup$
















                2












                2








                2





                $begingroup$

                If $aleq b $, then $a+cleq b+c $ for any $cin Bbb R $. By assumption, we have $$sum_{k=1}^{n}frac k{k+1}leq n-frac 1{n+1}.$$ Now add $dfrac{n+1}{n+2}$ on both sides, i.e., $$sum_{k=1}^{n}frac k{k+1}+frac{n+1}{n+2}leq n-frac 1{n+1}+frac{n+1}{n+2}.$$ Note that $$sum_{k=1}^{n}frac k{k+1}+frac{n+1}{n+2}=sum_{k=1}^{n+1}frac k{k+1}.$$ Hence we have $$sum_{k=1}^{n+1}frac k{k+1}leq n-frac 1{n+1}+frac{n+1}{n+2}.$$






                share|cite|improve this answer











                $endgroup$



                If $aleq b $, then $a+cleq b+c $ for any $cin Bbb R $. By assumption, we have $$sum_{k=1}^{n}frac k{k+1}leq n-frac 1{n+1}.$$ Now add $dfrac{n+1}{n+2}$ on both sides, i.e., $$sum_{k=1}^{n}frac k{k+1}+frac{n+1}{n+2}leq n-frac 1{n+1}+frac{n+1}{n+2}.$$ Note that $$sum_{k=1}^{n}frac k{k+1}+frac{n+1}{n+2}=sum_{k=1}^{n+1}frac k{k+1}.$$ Hence we have $$sum_{k=1}^{n+1}frac k{k+1}leq n-frac 1{n+1}+frac{n+1}{n+2}.$$







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited 12 hours ago

























                answered 12 hours ago









                Thomas ShelbyThomas Shelby

                3,7492525




                3,7492525























                    1












                    $begingroup$

                    Regarding the first inequality you're asking about, they are actually adding the term $frac{n+1}{n+2}$ to both sides, but on the left hand side it is added by increasing the upper limit in the sum by $1$, and to not change the inequality you have to add $frac{n+1}{n+2}$ to the right hand side.



                    The subsequent steps in the proof you posted are just rearrangements of fractions using algebra, nothing actually changes there until the last line. Then they just use the fact that $frac{1}{(n+1)(n+2)} leq frac{1}{n+2}$






                    share|cite|improve this answer









                    $endgroup$













                    • $begingroup$
                      Cool just last quick question, for the left hand side if instead of increasing the upper limit of the sum by 1, I added $frac{n+1}{n+2}$ to both sides, that would be the same?
                      $endgroup$
                      – Brownie
                      12 hours ago










                    • $begingroup$
                      Yes, that would be the same.
                      $endgroup$
                      – Thomas Fjærvik
                      12 hours ago
















                    1












                    $begingroup$

                    Regarding the first inequality you're asking about, they are actually adding the term $frac{n+1}{n+2}$ to both sides, but on the left hand side it is added by increasing the upper limit in the sum by $1$, and to not change the inequality you have to add $frac{n+1}{n+2}$ to the right hand side.



                    The subsequent steps in the proof you posted are just rearrangements of fractions using algebra, nothing actually changes there until the last line. Then they just use the fact that $frac{1}{(n+1)(n+2)} leq frac{1}{n+2}$






                    share|cite|improve this answer









                    $endgroup$













                    • $begingroup$
                      Cool just last quick question, for the left hand side if instead of increasing the upper limit of the sum by 1, I added $frac{n+1}{n+2}$ to both sides, that would be the same?
                      $endgroup$
                      – Brownie
                      12 hours ago










                    • $begingroup$
                      Yes, that would be the same.
                      $endgroup$
                      – Thomas Fjærvik
                      12 hours ago














                    1












                    1








                    1





                    $begingroup$

                    Regarding the first inequality you're asking about, they are actually adding the term $frac{n+1}{n+2}$ to both sides, but on the left hand side it is added by increasing the upper limit in the sum by $1$, and to not change the inequality you have to add $frac{n+1}{n+2}$ to the right hand side.



                    The subsequent steps in the proof you posted are just rearrangements of fractions using algebra, nothing actually changes there until the last line. Then they just use the fact that $frac{1}{(n+1)(n+2)} leq frac{1}{n+2}$






                    share|cite|improve this answer









                    $endgroup$



                    Regarding the first inequality you're asking about, they are actually adding the term $frac{n+1}{n+2}$ to both sides, but on the left hand side it is added by increasing the upper limit in the sum by $1$, and to not change the inequality you have to add $frac{n+1}{n+2}$ to the right hand side.



                    The subsequent steps in the proof you posted are just rearrangements of fractions using algebra, nothing actually changes there until the last line. Then they just use the fact that $frac{1}{(n+1)(n+2)} leq frac{1}{n+2}$







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered 12 hours ago









                    Thomas FjærvikThomas Fjærvik

                    2039




                    2039












                    • $begingroup$
                      Cool just last quick question, for the left hand side if instead of increasing the upper limit of the sum by 1, I added $frac{n+1}{n+2}$ to both sides, that would be the same?
                      $endgroup$
                      – Brownie
                      12 hours ago










                    • $begingroup$
                      Yes, that would be the same.
                      $endgroup$
                      – Thomas Fjærvik
                      12 hours ago


















                    • $begingroup$
                      Cool just last quick question, for the left hand side if instead of increasing the upper limit of the sum by 1, I added $frac{n+1}{n+2}$ to both sides, that would be the same?
                      $endgroup$
                      – Brownie
                      12 hours ago










                    • $begingroup$
                      Yes, that would be the same.
                      $endgroup$
                      – Thomas Fjærvik
                      12 hours ago
















                    $begingroup$
                    Cool just last quick question, for the left hand side if instead of increasing the upper limit of the sum by 1, I added $frac{n+1}{n+2}$ to both sides, that would be the same?
                    $endgroup$
                    – Brownie
                    12 hours ago




                    $begingroup$
                    Cool just last quick question, for the left hand side if instead of increasing the upper limit of the sum by 1, I added $frac{n+1}{n+2}$ to both sides, that would be the same?
                    $endgroup$
                    – Brownie
                    12 hours ago












                    $begingroup$
                    Yes, that would be the same.
                    $endgroup$
                    – Thomas Fjærvik
                    12 hours ago




                    $begingroup$
                    Yes, that would be the same.
                    $endgroup$
                    – Thomas Fjærvik
                    12 hours ago


















                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3133089%2fthe-inductive-proof-of-sum-k-1n-frac-kk1-leq-n-frac1n1-is-uncle%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    El tren de la libertad Índice Antecedentes "Porque yo decido" Desarrollo de la...

                    Castillo d'Acher Características Menú de navegación

                    Connecting two nodes from the same mother node horizontallyTikZ: What EXACTLY does the the |- notation for...