Example of compact Riemannian manifold with only one geodesic. The 2019 Stack Overflow...

How many cones with angle theta can I pack into the unit sphere?

For what reasons would an animal species NOT cross a *horizontal* land bridge?

How to politely respond to generic emails requesting a PhD/job in my lab? Without wasting too much time

Why can't wing-mounted spoilers be used to steepen approaches?

What was the last x86 CPU that did not have the x87 floating-point unit built in?

Make it rain characters

Can the DM override racial traits?

Can the Right Ascension and Argument of Perigee of a spacecraft's orbit keep varying by themselves with time?

Is there a writing software that you can sort scenes like slides in PowerPoint?

Why did Peik Lin say, "I'm not an animal"?

My body leaves; my core can stay

Was credit for the black hole image misappropriated?

Word for: a synonym with a positive connotation?

Accepted by European university, rejected by all American ones I applied to? Possible reasons?

Mortgage adviser recommends a longer term than necessary combined with overpayments

60's-70's movie: home appliances revolting against the owners

Working through the single responsibility principle (SRP) in Python when calls are expensive

Do warforged have souls?

Can I visit the Trinity College (Cambridge) library and see some of their rare books

Why can I use a list index as an indexing variable in a for loop?

"is" operation returns false even though two objects have same id

Didn't get enough time to take a Coding Test - what to do now?

How to handle characters who are more educated than the author?

What does Linus Torvalds mean when he says that Git "never ever" tracks a file?



Example of compact Riemannian manifold with only one geodesic.



The 2019 Stack Overflow Developer Survey Results Are In
Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Why are we interested in closed geodesics?Existence of geodesic on a compact Riemannian manifoldCompleteness of a Riemannian manifold with boundaryTotally geodesic hypersurface in compact hyperbolic manifoldTriangle equality in a Riemannian manifold implies “geodesic colinearity”?Example for conjugate points with only one connecting geodesicExample for infinitely many points with more than one minimizing geodesic to a point?Examples of compact negatively curved constant curvature manifoldCompact totally geodesic submanifolds in manifold with positive sectional curvatureClosed geodesic on a non-simply connected Riemannian manifold












2












$begingroup$


The Lyusternik-Fet theorem states that every compact Riemannian manifold has at least one closed geodesic.



Are there any easy-to-construct1 examples of compact Riemannian manifolds for which it is easy to see they only have one closed geodesic?2



If there aren't any such examples, are there any easy-to-construct examples that only have one closed geodesic but where proving this might be difficult?



And if there aren't any examples of this, are there any examples at all of compact manifolds with only one closed geodesic?





1 Of course, the $1$-sphere $S^1$ contains just one closed geodesic, but I'm interested in examples besides this one.



2 By the theorem of the three geodesics, this example cannot be a topological sphere.










share|cite|improve this question











$endgroup$

















    2












    $begingroup$


    The Lyusternik-Fet theorem states that every compact Riemannian manifold has at least one closed geodesic.



    Are there any easy-to-construct1 examples of compact Riemannian manifolds for which it is easy to see they only have one closed geodesic?2



    If there aren't any such examples, are there any easy-to-construct examples that only have one closed geodesic but where proving this might be difficult?



    And if there aren't any examples of this, are there any examples at all of compact manifolds with only one closed geodesic?





    1 Of course, the $1$-sphere $S^1$ contains just one closed geodesic, but I'm interested in examples besides this one.



    2 By the theorem of the three geodesics, this example cannot be a topological sphere.










    share|cite|improve this question











    $endgroup$















      2












      2








      2





      $begingroup$


      The Lyusternik-Fet theorem states that every compact Riemannian manifold has at least one closed geodesic.



      Are there any easy-to-construct1 examples of compact Riemannian manifolds for which it is easy to see they only have one closed geodesic?2



      If there aren't any such examples, are there any easy-to-construct examples that only have one closed geodesic but where proving this might be difficult?



      And if there aren't any examples of this, are there any examples at all of compact manifolds with only one closed geodesic?





      1 Of course, the $1$-sphere $S^1$ contains just one closed geodesic, but I'm interested in examples besides this one.



      2 By the theorem of the three geodesics, this example cannot be a topological sphere.










      share|cite|improve this question











      $endgroup$




      The Lyusternik-Fet theorem states that every compact Riemannian manifold has at least one closed geodesic.



      Are there any easy-to-construct1 examples of compact Riemannian manifolds for which it is easy to see they only have one closed geodesic?2



      If there aren't any such examples, are there any easy-to-construct examples that only have one closed geodesic but where proving this might be difficult?



      And if there aren't any examples of this, are there any examples at all of compact manifolds with only one closed geodesic?





      1 Of course, the $1$-sphere $S^1$ contains just one closed geodesic, but I'm interested in examples besides this one.



      2 By the theorem of the three geodesics, this example cannot be a topological sphere.







      differential-geometry examples-counterexamples geodesic






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited 1 hour ago







      Peter Kagey

















      asked 1 hour ago









      Peter KageyPeter Kagey

      1,57072053




      1,57072053






















          2 Answers
          2






          active

          oldest

          votes


















          4












          $begingroup$

          First of all, you have to exclude constant maps $S^1to M$ from consideration: They are all closed geodesics. Secondly, you have to talk about geometrically distinct closed geodesics: Geodesics which have the same image are regarded as "the same". Then, it is a notorious conjecture/open problem:



          Conjecture. Every compact Riemannian manifold of dimension $n >1$ contains infinitely many geometrically distinct nonconstant geodesics.



          See for instance this survey article by Burns and Matveev.



          This is even unknown if $M$ is diffeomorphic to the sphere $S^n$, $nge 3$.






          share|cite|improve this answer











          $endgroup$





















            2












            $begingroup$

            If you analyze the geodesics using Clairaut's relation, you'll find that the only closed geodesic on a hyperboloid of one sheet is the central circle. Indeed, the same holds for a concave surface of revolution of the same "shape" as the hyperboloid of one sheet.



            EDIT: Apologies for missing the crucial compactness hypothesis.






            share|cite|improve this answer











            $endgroup$













            • $begingroup$
              Lovely example, but a hyperboloid isn't compact, right?
              $endgroup$
              – Peter Kagey
              1 hour ago










            • $begingroup$
              Oops. Sloppy reading. I'll delete.
              $endgroup$
              – Ted Shifrin
              1 hour ago










            • $begingroup$
              It's a nice example; you should leave it.
              $endgroup$
              – Peter Kagey
              1 hour ago












            Your Answer








            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3185649%2fexample-of-compact-riemannian-manifold-with-only-one-geodesic%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            4












            $begingroup$

            First of all, you have to exclude constant maps $S^1to M$ from consideration: They are all closed geodesics. Secondly, you have to talk about geometrically distinct closed geodesics: Geodesics which have the same image are regarded as "the same". Then, it is a notorious conjecture/open problem:



            Conjecture. Every compact Riemannian manifold of dimension $n >1$ contains infinitely many geometrically distinct nonconstant geodesics.



            See for instance this survey article by Burns and Matveev.



            This is even unknown if $M$ is diffeomorphic to the sphere $S^n$, $nge 3$.






            share|cite|improve this answer











            $endgroup$


















              4












              $begingroup$

              First of all, you have to exclude constant maps $S^1to M$ from consideration: They are all closed geodesics. Secondly, you have to talk about geometrically distinct closed geodesics: Geodesics which have the same image are regarded as "the same". Then, it is a notorious conjecture/open problem:



              Conjecture. Every compact Riemannian manifold of dimension $n >1$ contains infinitely many geometrically distinct nonconstant geodesics.



              See for instance this survey article by Burns and Matveev.



              This is even unknown if $M$ is diffeomorphic to the sphere $S^n$, $nge 3$.






              share|cite|improve this answer











              $endgroup$
















                4












                4








                4





                $begingroup$

                First of all, you have to exclude constant maps $S^1to M$ from consideration: They are all closed geodesics. Secondly, you have to talk about geometrically distinct closed geodesics: Geodesics which have the same image are regarded as "the same". Then, it is a notorious conjecture/open problem:



                Conjecture. Every compact Riemannian manifold of dimension $n >1$ contains infinitely many geometrically distinct nonconstant geodesics.



                See for instance this survey article by Burns and Matveev.



                This is even unknown if $M$ is diffeomorphic to the sphere $S^n$, $nge 3$.






                share|cite|improve this answer











                $endgroup$



                First of all, you have to exclude constant maps $S^1to M$ from consideration: They are all closed geodesics. Secondly, you have to talk about geometrically distinct closed geodesics: Geodesics which have the same image are regarded as "the same". Then, it is a notorious conjecture/open problem:



                Conjecture. Every compact Riemannian manifold of dimension $n >1$ contains infinitely many geometrically distinct nonconstant geodesics.



                See for instance this survey article by Burns and Matveev.



                This is even unknown if $M$ is diffeomorphic to the sphere $S^n$, $nge 3$.







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited 1 hour ago

























                answered 1 hour ago









                Moishe KohanMoishe Kohan

                48.6k344110




                48.6k344110























                    2












                    $begingroup$

                    If you analyze the geodesics using Clairaut's relation, you'll find that the only closed geodesic on a hyperboloid of one sheet is the central circle. Indeed, the same holds for a concave surface of revolution of the same "shape" as the hyperboloid of one sheet.



                    EDIT: Apologies for missing the crucial compactness hypothesis.






                    share|cite|improve this answer











                    $endgroup$













                    • $begingroup$
                      Lovely example, but a hyperboloid isn't compact, right?
                      $endgroup$
                      – Peter Kagey
                      1 hour ago










                    • $begingroup$
                      Oops. Sloppy reading. I'll delete.
                      $endgroup$
                      – Ted Shifrin
                      1 hour ago










                    • $begingroup$
                      It's a nice example; you should leave it.
                      $endgroup$
                      – Peter Kagey
                      1 hour ago
















                    2












                    $begingroup$

                    If you analyze the geodesics using Clairaut's relation, you'll find that the only closed geodesic on a hyperboloid of one sheet is the central circle. Indeed, the same holds for a concave surface of revolution of the same "shape" as the hyperboloid of one sheet.



                    EDIT: Apologies for missing the crucial compactness hypothesis.






                    share|cite|improve this answer











                    $endgroup$













                    • $begingroup$
                      Lovely example, but a hyperboloid isn't compact, right?
                      $endgroup$
                      – Peter Kagey
                      1 hour ago










                    • $begingroup$
                      Oops. Sloppy reading. I'll delete.
                      $endgroup$
                      – Ted Shifrin
                      1 hour ago










                    • $begingroup$
                      It's a nice example; you should leave it.
                      $endgroup$
                      – Peter Kagey
                      1 hour ago














                    2












                    2








                    2





                    $begingroup$

                    If you analyze the geodesics using Clairaut's relation, you'll find that the only closed geodesic on a hyperboloid of one sheet is the central circle. Indeed, the same holds for a concave surface of revolution of the same "shape" as the hyperboloid of one sheet.



                    EDIT: Apologies for missing the crucial compactness hypothesis.






                    share|cite|improve this answer











                    $endgroup$



                    If you analyze the geodesics using Clairaut's relation, you'll find that the only closed geodesic on a hyperboloid of one sheet is the central circle. Indeed, the same holds for a concave surface of revolution of the same "shape" as the hyperboloid of one sheet.



                    EDIT: Apologies for missing the crucial compactness hypothesis.







                    share|cite|improve this answer














                    share|cite|improve this answer



                    share|cite|improve this answer








                    edited 1 hour ago

























                    answered 1 hour ago









                    Ted ShifrinTed Shifrin

                    65k44792




                    65k44792












                    • $begingroup$
                      Lovely example, but a hyperboloid isn't compact, right?
                      $endgroup$
                      – Peter Kagey
                      1 hour ago










                    • $begingroup$
                      Oops. Sloppy reading. I'll delete.
                      $endgroup$
                      – Ted Shifrin
                      1 hour ago










                    • $begingroup$
                      It's a nice example; you should leave it.
                      $endgroup$
                      – Peter Kagey
                      1 hour ago


















                    • $begingroup$
                      Lovely example, but a hyperboloid isn't compact, right?
                      $endgroup$
                      – Peter Kagey
                      1 hour ago










                    • $begingroup$
                      Oops. Sloppy reading. I'll delete.
                      $endgroup$
                      – Ted Shifrin
                      1 hour ago










                    • $begingroup$
                      It's a nice example; you should leave it.
                      $endgroup$
                      – Peter Kagey
                      1 hour ago
















                    $begingroup$
                    Lovely example, but a hyperboloid isn't compact, right?
                    $endgroup$
                    – Peter Kagey
                    1 hour ago




                    $begingroup$
                    Lovely example, but a hyperboloid isn't compact, right?
                    $endgroup$
                    – Peter Kagey
                    1 hour ago












                    $begingroup$
                    Oops. Sloppy reading. I'll delete.
                    $endgroup$
                    – Ted Shifrin
                    1 hour ago




                    $begingroup$
                    Oops. Sloppy reading. I'll delete.
                    $endgroup$
                    – Ted Shifrin
                    1 hour ago












                    $begingroup$
                    It's a nice example; you should leave it.
                    $endgroup$
                    – Peter Kagey
                    1 hour ago




                    $begingroup$
                    It's a nice example; you should leave it.
                    $endgroup$
                    – Peter Kagey
                    1 hour ago


















                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3185649%2fexample-of-compact-riemannian-manifold-with-only-one-geodesic%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    El tren de la libertad Índice Antecedentes "Porque yo decido" Desarrollo de la...

                    Puerta de Hutt Referencias Enlaces externos Menú de navegación15°58′00″S 5°42′00″O /...

                    Castillo d'Acher Características Menú de navegación