Is every diagonalizable matrix is an exponentialSymmetric matrix is always diagonalizable?Is the following...
"You are your self first supporter", a more proper way to say it
Mathematical cryptic clues
Arthur Somervell: 1000 Exercises - Meaning of this notation
Which models of the Boeing 737 are still in production?
What would happen to a modern skyscraper if it rains micro blackholes?
Adding span tags within wp_list_pages list items
Can an x86 CPU running in real mode be considered to be basically an 8086 CPU?
Why "Having chlorophyll without photosynthesis is actually very dangerous" and "like living with a bomb"?
Fencing style for blades that can attack from a distance
strToHex ( string to its hex representation as string)
LaTeX closing $ signs makes cursor jump
How can I make my BBEG immortal short of making them a Lich or Vampire?
Why was the small council so happy for Tyrion to become the Master of Coin?
Today is the Center
Do I have a twin with permutated remainders?
What's the point of deactivating Num Lock on login screens?
Why, historically, did Gödel think CH was false?
The use of multiple foreign keys on same column in SQL Server
Mage Armor with Defense fighting style (for Adventurers League bladeslinger)
How does strength of boric acid solution increase in presence of salicylic acid?
Is it unprofessional to ask if a job posting on GlassDoor is real?
can i play a electric guitar through a bass amp?
Minkowski space
Is it possible to do 50 km distance without any previous training?
Is every diagonalizable matrix is an exponential
Symmetric matrix is always diagonalizable?Is the following matrix diagonalizable?Showing that if $AB=BA$ then $A$ and $B$ are simultaneously diagonalizableTrue of False: If $A$ is an $ntimes n$ diagonalizable matrix, then $0$ can not be in eigenvalue of $A$.Diagonalizable Matrices and Triangular MatricesDetermine if a matrix is diagonalizableDoes every diagonalizable matrix have eigenvectors which form a basis?Matrix exponential of any matrixIs there a matrix $B$ such that $B^2=A$, with $A$ being diagonalizable?Let $A$ be a diagonalizable matrix, show that $A^{-1} = A$
$begingroup$
Is every diagonalizable matrix is an exponential?
I know it is true in $SL_2(Bbb C)$ and I think it is true in $M_n(Bbb C)$ because if $M=PDP^{-1}$, we might be able to write D as $exp(E)$ for some $Ein M_n(Bbb C)$ as the exponential is surjective from $Bbb C$ onto $Bbb C^*$ and all eigenvalues of M are non zero because they are distinct.
Thank you for your help.
linear-algebra lie-groups diagonalization matrix-exponential
$endgroup$
add a comment |
$begingroup$
Is every diagonalizable matrix is an exponential?
I know it is true in $SL_2(Bbb C)$ and I think it is true in $M_n(Bbb C)$ because if $M=PDP^{-1}$, we might be able to write D as $exp(E)$ for some $Ein M_n(Bbb C)$ as the exponential is surjective from $Bbb C$ onto $Bbb C^*$ and all eigenvalues of M are non zero because they are distinct.
Thank you for your help.
linear-algebra lie-groups diagonalization matrix-exponential
$endgroup$
2
$begingroup$
What if $M=O$ (the zero matrix)?
$endgroup$
– Minus One-Twelfth
12 hours ago
$begingroup$
Right! I missed this case, so I should add the condition X diagonalizable + inversible $Leftrightarrow$ X is an exponential. Thank you!
$endgroup$
– PerelMan
11 hours ago
add a comment |
$begingroup$
Is every diagonalizable matrix is an exponential?
I know it is true in $SL_2(Bbb C)$ and I think it is true in $M_n(Bbb C)$ because if $M=PDP^{-1}$, we might be able to write D as $exp(E)$ for some $Ein M_n(Bbb C)$ as the exponential is surjective from $Bbb C$ onto $Bbb C^*$ and all eigenvalues of M are non zero because they are distinct.
Thank you for your help.
linear-algebra lie-groups diagonalization matrix-exponential
$endgroup$
Is every diagonalizable matrix is an exponential?
I know it is true in $SL_2(Bbb C)$ and I think it is true in $M_n(Bbb C)$ because if $M=PDP^{-1}$, we might be able to write D as $exp(E)$ for some $Ein M_n(Bbb C)$ as the exponential is surjective from $Bbb C$ onto $Bbb C^*$ and all eigenvalues of M are non zero because they are distinct.
Thank you for your help.
linear-algebra lie-groups diagonalization matrix-exponential
linear-algebra lie-groups diagonalization matrix-exponential
edited 12 hours ago
José Carlos Santos
173k23133241
173k23133241
asked 12 hours ago
PerelManPerelMan
723413
723413
2
$begingroup$
What if $M=O$ (the zero matrix)?
$endgroup$
– Minus One-Twelfth
12 hours ago
$begingroup$
Right! I missed this case, so I should add the condition X diagonalizable + inversible $Leftrightarrow$ X is an exponential. Thank you!
$endgroup$
– PerelMan
11 hours ago
add a comment |
2
$begingroup$
What if $M=O$ (the zero matrix)?
$endgroup$
– Minus One-Twelfth
12 hours ago
$begingroup$
Right! I missed this case, so I should add the condition X diagonalizable + inversible $Leftrightarrow$ X is an exponential. Thank you!
$endgroup$
– PerelMan
11 hours ago
2
2
$begingroup$
What if $M=O$ (the zero matrix)?
$endgroup$
– Minus One-Twelfth
12 hours ago
$begingroup$
What if $M=O$ (the zero matrix)?
$endgroup$
– Minus One-Twelfth
12 hours ago
$begingroup$
Right! I missed this case, so I should add the condition X diagonalizable + inversible $Leftrightarrow$ X is an exponential. Thank you!
$endgroup$
– PerelMan
11 hours ago
$begingroup$
Right! I missed this case, so I should add the condition X diagonalizable + inversible $Leftrightarrow$ X is an exponential. Thank you!
$endgroup$
– PerelMan
11 hours ago
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
A diagonalizable matrix is an exponential (over $mathbb C$) if and only if it is not a singular matrix. Of course, no singular matrix can be an exponential, since $det e^A=e^{operatorname{tr}A}neq0$. On the other hand, if $A$ is diagonalizable, then it is similar to a diagonal matrix$$begin{bmatrix}d_1&0&0&ldots&0\0&d_2&0&ldots&0\0&0&d_3&ldots&0\vdots&vdots&vdots&ddots&vdots\0&0&0&ldots&d_nend{bmatrix}.$$Then $A$ is non-singular if and only if every $d_k$ is non--zero. So, let $lambda_k$ be a logarithm of $d_k$ and$$expleft(begin{bmatrix}lambda_1&0&0&ldots&0\0&lambda_2&0&ldots&0\0&0&lambda_3&ldots&0\vdots&vdots&vdots&ddots&vdots\0&0&0&ldots&lambda_nend{bmatrix}right)=begin{bmatrix}d_1&0&0&ldots&0\0&d_2&0&ldots&0\0&0&d_3&ldots&0\vdots&vdots&vdots&ddots&vdots\0&0&0&ldots&d_nend{bmatrix}.$$So, $A$ is exponential.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3177002%2fis-every-diagonalizable-matrix-is-an-exponential%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
A diagonalizable matrix is an exponential (over $mathbb C$) if and only if it is not a singular matrix. Of course, no singular matrix can be an exponential, since $det e^A=e^{operatorname{tr}A}neq0$. On the other hand, if $A$ is diagonalizable, then it is similar to a diagonal matrix$$begin{bmatrix}d_1&0&0&ldots&0\0&d_2&0&ldots&0\0&0&d_3&ldots&0\vdots&vdots&vdots&ddots&vdots\0&0&0&ldots&d_nend{bmatrix}.$$Then $A$ is non-singular if and only if every $d_k$ is non--zero. So, let $lambda_k$ be a logarithm of $d_k$ and$$expleft(begin{bmatrix}lambda_1&0&0&ldots&0\0&lambda_2&0&ldots&0\0&0&lambda_3&ldots&0\vdots&vdots&vdots&ddots&vdots\0&0&0&ldots&lambda_nend{bmatrix}right)=begin{bmatrix}d_1&0&0&ldots&0\0&d_2&0&ldots&0\0&0&d_3&ldots&0\vdots&vdots&vdots&ddots&vdots\0&0&0&ldots&d_nend{bmatrix}.$$So, $A$ is exponential.
$endgroup$
add a comment |
$begingroup$
A diagonalizable matrix is an exponential (over $mathbb C$) if and only if it is not a singular matrix. Of course, no singular matrix can be an exponential, since $det e^A=e^{operatorname{tr}A}neq0$. On the other hand, if $A$ is diagonalizable, then it is similar to a diagonal matrix$$begin{bmatrix}d_1&0&0&ldots&0\0&d_2&0&ldots&0\0&0&d_3&ldots&0\vdots&vdots&vdots&ddots&vdots\0&0&0&ldots&d_nend{bmatrix}.$$Then $A$ is non-singular if and only if every $d_k$ is non--zero. So, let $lambda_k$ be a logarithm of $d_k$ and$$expleft(begin{bmatrix}lambda_1&0&0&ldots&0\0&lambda_2&0&ldots&0\0&0&lambda_3&ldots&0\vdots&vdots&vdots&ddots&vdots\0&0&0&ldots&lambda_nend{bmatrix}right)=begin{bmatrix}d_1&0&0&ldots&0\0&d_2&0&ldots&0\0&0&d_3&ldots&0\vdots&vdots&vdots&ddots&vdots\0&0&0&ldots&d_nend{bmatrix}.$$So, $A$ is exponential.
$endgroup$
add a comment |
$begingroup$
A diagonalizable matrix is an exponential (over $mathbb C$) if and only if it is not a singular matrix. Of course, no singular matrix can be an exponential, since $det e^A=e^{operatorname{tr}A}neq0$. On the other hand, if $A$ is diagonalizable, then it is similar to a diagonal matrix$$begin{bmatrix}d_1&0&0&ldots&0\0&d_2&0&ldots&0\0&0&d_3&ldots&0\vdots&vdots&vdots&ddots&vdots\0&0&0&ldots&d_nend{bmatrix}.$$Then $A$ is non-singular if and only if every $d_k$ is non--zero. So, let $lambda_k$ be a logarithm of $d_k$ and$$expleft(begin{bmatrix}lambda_1&0&0&ldots&0\0&lambda_2&0&ldots&0\0&0&lambda_3&ldots&0\vdots&vdots&vdots&ddots&vdots\0&0&0&ldots&lambda_nend{bmatrix}right)=begin{bmatrix}d_1&0&0&ldots&0\0&d_2&0&ldots&0\0&0&d_3&ldots&0\vdots&vdots&vdots&ddots&vdots\0&0&0&ldots&d_nend{bmatrix}.$$So, $A$ is exponential.
$endgroup$
A diagonalizable matrix is an exponential (over $mathbb C$) if and only if it is not a singular matrix. Of course, no singular matrix can be an exponential, since $det e^A=e^{operatorname{tr}A}neq0$. On the other hand, if $A$ is diagonalizable, then it is similar to a diagonal matrix$$begin{bmatrix}d_1&0&0&ldots&0\0&d_2&0&ldots&0\0&0&d_3&ldots&0\vdots&vdots&vdots&ddots&vdots\0&0&0&ldots&d_nend{bmatrix}.$$Then $A$ is non-singular if and only if every $d_k$ is non--zero. So, let $lambda_k$ be a logarithm of $d_k$ and$$expleft(begin{bmatrix}lambda_1&0&0&ldots&0\0&lambda_2&0&ldots&0\0&0&lambda_3&ldots&0\vdots&vdots&vdots&ddots&vdots\0&0&0&ldots&lambda_nend{bmatrix}right)=begin{bmatrix}d_1&0&0&ldots&0\0&d_2&0&ldots&0\0&0&d_3&ldots&0\vdots&vdots&vdots&ddots&vdots\0&0&0&ldots&d_nend{bmatrix}.$$So, $A$ is exponential.
edited 12 hours ago
answered 12 hours ago
José Carlos SantosJosé Carlos Santos
173k23133241
173k23133241
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3177002%2fis-every-diagonalizable-matrix-is-an-exponential%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
$begingroup$
What if $M=O$ (the zero matrix)?
$endgroup$
– Minus One-Twelfth
12 hours ago
$begingroup$
Right! I missed this case, so I should add the condition X diagonalizable + inversible $Leftrightarrow$ X is an exponential. Thank you!
$endgroup$
– PerelMan
11 hours ago