Is every diagonalizable matrix is an exponentialSymmetric matrix is always diagonalizable?Is the following...

"You are your self first supporter", a more proper way to say it

Mathematical cryptic clues

Arthur Somervell: 1000 Exercises - Meaning of this notation

Which models of the Boeing 737 are still in production?

What would happen to a modern skyscraper if it rains micro blackholes?

Adding span tags within wp_list_pages list items

Can an x86 CPU running in real mode be considered to be basically an 8086 CPU?

Why "Having chlorophyll without photosynthesis is actually very dangerous" and "like living with a bomb"?

Fencing style for blades that can attack from a distance

strToHex ( string to its hex representation as string)

LaTeX closing $ signs makes cursor jump

How can I make my BBEG immortal short of making them a Lich or Vampire?

Why was the small council so happy for Tyrion to become the Master of Coin?

Today is the Center

Do I have a twin with permutated remainders?

What's the point of deactivating Num Lock on login screens?

Why, historically, did Gödel think CH was false?

The use of multiple foreign keys on same column in SQL Server

Mage Armor with Defense fighting style (for Adventurers League bladeslinger)

How does strength of boric acid solution increase in presence of salicylic acid?

Is it unprofessional to ask if a job posting on GlassDoor is real?

can i play a electric guitar through a bass amp?

Minkowski space

Is it possible to do 50 km distance without any previous training?



Is every diagonalizable matrix is an exponential


Symmetric matrix is always diagonalizable?Is the following matrix diagonalizable?Showing that if $AB=BA$ then $A$ and $B$ are simultaneously diagonalizableTrue of False: If $A$ is an $ntimes n$ diagonalizable matrix, then $0$ can not be in eigenvalue of $A$.Diagonalizable Matrices and Triangular MatricesDetermine if a matrix is diagonalizableDoes every diagonalizable matrix have eigenvectors which form a basis?Matrix exponential of any matrixIs there a matrix $B$ such that $B^2=A$, with $A$ being diagonalizable?Let $A$ be a diagonalizable matrix, show that $A^{-1} = A$













1












$begingroup$


Is every diagonalizable matrix is an exponential?



I know it is true in $SL_2(Bbb C)$ and I think it is true in $M_n(Bbb C)$ because if $M=PDP^{-1}$, we might be able to write D as $exp(E)$ for some $Ein M_n(Bbb C)$ as the exponential is surjective from $Bbb C$ onto $Bbb C^*$ and all eigenvalues of M are non zero because they are distinct.



Thank you for your help.










share|cite|improve this question











$endgroup$








  • 2




    $begingroup$
    What if $M=O$ (the zero matrix)?
    $endgroup$
    – Minus One-Twelfth
    12 hours ago










  • $begingroup$
    Right! I missed this case, so I should add the condition X diagonalizable + inversible $Leftrightarrow$ X is an exponential. Thank you!
    $endgroup$
    – PerelMan
    11 hours ago


















1












$begingroup$


Is every diagonalizable matrix is an exponential?



I know it is true in $SL_2(Bbb C)$ and I think it is true in $M_n(Bbb C)$ because if $M=PDP^{-1}$, we might be able to write D as $exp(E)$ for some $Ein M_n(Bbb C)$ as the exponential is surjective from $Bbb C$ onto $Bbb C^*$ and all eigenvalues of M are non zero because they are distinct.



Thank you for your help.










share|cite|improve this question











$endgroup$








  • 2




    $begingroup$
    What if $M=O$ (the zero matrix)?
    $endgroup$
    – Minus One-Twelfth
    12 hours ago










  • $begingroup$
    Right! I missed this case, so I should add the condition X diagonalizable + inversible $Leftrightarrow$ X is an exponential. Thank you!
    $endgroup$
    – PerelMan
    11 hours ago
















1












1








1





$begingroup$


Is every diagonalizable matrix is an exponential?



I know it is true in $SL_2(Bbb C)$ and I think it is true in $M_n(Bbb C)$ because if $M=PDP^{-1}$, we might be able to write D as $exp(E)$ for some $Ein M_n(Bbb C)$ as the exponential is surjective from $Bbb C$ onto $Bbb C^*$ and all eigenvalues of M are non zero because they are distinct.



Thank you for your help.










share|cite|improve this question











$endgroup$




Is every diagonalizable matrix is an exponential?



I know it is true in $SL_2(Bbb C)$ and I think it is true in $M_n(Bbb C)$ because if $M=PDP^{-1}$, we might be able to write D as $exp(E)$ for some $Ein M_n(Bbb C)$ as the exponential is surjective from $Bbb C$ onto $Bbb C^*$ and all eigenvalues of M are non zero because they are distinct.



Thank you for your help.







linear-algebra lie-groups diagonalization matrix-exponential






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 12 hours ago









José Carlos Santos

173k23133241




173k23133241










asked 12 hours ago









PerelManPerelMan

723413




723413








  • 2




    $begingroup$
    What if $M=O$ (the zero matrix)?
    $endgroup$
    – Minus One-Twelfth
    12 hours ago










  • $begingroup$
    Right! I missed this case, so I should add the condition X diagonalizable + inversible $Leftrightarrow$ X is an exponential. Thank you!
    $endgroup$
    – PerelMan
    11 hours ago
















  • 2




    $begingroup$
    What if $M=O$ (the zero matrix)?
    $endgroup$
    – Minus One-Twelfth
    12 hours ago










  • $begingroup$
    Right! I missed this case, so I should add the condition X diagonalizable + inversible $Leftrightarrow$ X is an exponential. Thank you!
    $endgroup$
    – PerelMan
    11 hours ago










2




2




$begingroup$
What if $M=O$ (the zero matrix)?
$endgroup$
– Minus One-Twelfth
12 hours ago




$begingroup$
What if $M=O$ (the zero matrix)?
$endgroup$
– Minus One-Twelfth
12 hours ago












$begingroup$
Right! I missed this case, so I should add the condition X diagonalizable + inversible $Leftrightarrow$ X is an exponential. Thank you!
$endgroup$
– PerelMan
11 hours ago






$begingroup$
Right! I missed this case, so I should add the condition X diagonalizable + inversible $Leftrightarrow$ X is an exponential. Thank you!
$endgroup$
– PerelMan
11 hours ago












1 Answer
1






active

oldest

votes


















4












$begingroup$

A diagonalizable matrix is an exponential (over $mathbb C$) if and only if it is not a singular matrix. Of course, no singular matrix can be an exponential, since $det e^A=e^{operatorname{tr}A}neq0$. On the other hand, if $A$ is diagonalizable, then it is similar to a diagonal matrix$$begin{bmatrix}d_1&0&0&ldots&0\0&d_2&0&ldots&0\0&0&d_3&ldots&0\vdots&vdots&vdots&ddots&vdots\0&0&0&ldots&d_nend{bmatrix}.$$Then $A$ is non-singular if and only if every $d_k$ is non--zero. So, let $lambda_k$ be a logarithm of $d_k$ and$$expleft(begin{bmatrix}lambda_1&0&0&ldots&0\0&lambda_2&0&ldots&0\0&0&lambda_3&ldots&0\vdots&vdots&vdots&ddots&vdots\0&0&0&ldots&lambda_nend{bmatrix}right)=begin{bmatrix}d_1&0&0&ldots&0\0&d_2&0&ldots&0\0&0&d_3&ldots&0\vdots&vdots&vdots&ddots&vdots\0&0&0&ldots&d_nend{bmatrix}.$$So, $A$ is exponential.






share|cite|improve this answer











$endgroup$














    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3177002%2fis-every-diagonalizable-matrix-is-an-exponential%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    4












    $begingroup$

    A diagonalizable matrix is an exponential (over $mathbb C$) if and only if it is not a singular matrix. Of course, no singular matrix can be an exponential, since $det e^A=e^{operatorname{tr}A}neq0$. On the other hand, if $A$ is diagonalizable, then it is similar to a diagonal matrix$$begin{bmatrix}d_1&0&0&ldots&0\0&d_2&0&ldots&0\0&0&d_3&ldots&0\vdots&vdots&vdots&ddots&vdots\0&0&0&ldots&d_nend{bmatrix}.$$Then $A$ is non-singular if and only if every $d_k$ is non--zero. So, let $lambda_k$ be a logarithm of $d_k$ and$$expleft(begin{bmatrix}lambda_1&0&0&ldots&0\0&lambda_2&0&ldots&0\0&0&lambda_3&ldots&0\vdots&vdots&vdots&ddots&vdots\0&0&0&ldots&lambda_nend{bmatrix}right)=begin{bmatrix}d_1&0&0&ldots&0\0&d_2&0&ldots&0\0&0&d_3&ldots&0\vdots&vdots&vdots&ddots&vdots\0&0&0&ldots&d_nend{bmatrix}.$$So, $A$ is exponential.






    share|cite|improve this answer











    $endgroup$


















      4












      $begingroup$

      A diagonalizable matrix is an exponential (over $mathbb C$) if and only if it is not a singular matrix. Of course, no singular matrix can be an exponential, since $det e^A=e^{operatorname{tr}A}neq0$. On the other hand, if $A$ is diagonalizable, then it is similar to a diagonal matrix$$begin{bmatrix}d_1&0&0&ldots&0\0&d_2&0&ldots&0\0&0&d_3&ldots&0\vdots&vdots&vdots&ddots&vdots\0&0&0&ldots&d_nend{bmatrix}.$$Then $A$ is non-singular if and only if every $d_k$ is non--zero. So, let $lambda_k$ be a logarithm of $d_k$ and$$expleft(begin{bmatrix}lambda_1&0&0&ldots&0\0&lambda_2&0&ldots&0\0&0&lambda_3&ldots&0\vdots&vdots&vdots&ddots&vdots\0&0&0&ldots&lambda_nend{bmatrix}right)=begin{bmatrix}d_1&0&0&ldots&0\0&d_2&0&ldots&0\0&0&d_3&ldots&0\vdots&vdots&vdots&ddots&vdots\0&0&0&ldots&d_nend{bmatrix}.$$So, $A$ is exponential.






      share|cite|improve this answer











      $endgroup$
















        4












        4








        4





        $begingroup$

        A diagonalizable matrix is an exponential (over $mathbb C$) if and only if it is not a singular matrix. Of course, no singular matrix can be an exponential, since $det e^A=e^{operatorname{tr}A}neq0$. On the other hand, if $A$ is diagonalizable, then it is similar to a diagonal matrix$$begin{bmatrix}d_1&0&0&ldots&0\0&d_2&0&ldots&0\0&0&d_3&ldots&0\vdots&vdots&vdots&ddots&vdots\0&0&0&ldots&d_nend{bmatrix}.$$Then $A$ is non-singular if and only if every $d_k$ is non--zero. So, let $lambda_k$ be a logarithm of $d_k$ and$$expleft(begin{bmatrix}lambda_1&0&0&ldots&0\0&lambda_2&0&ldots&0\0&0&lambda_3&ldots&0\vdots&vdots&vdots&ddots&vdots\0&0&0&ldots&lambda_nend{bmatrix}right)=begin{bmatrix}d_1&0&0&ldots&0\0&d_2&0&ldots&0\0&0&d_3&ldots&0\vdots&vdots&vdots&ddots&vdots\0&0&0&ldots&d_nend{bmatrix}.$$So, $A$ is exponential.






        share|cite|improve this answer











        $endgroup$



        A diagonalizable matrix is an exponential (over $mathbb C$) if and only if it is not a singular matrix. Of course, no singular matrix can be an exponential, since $det e^A=e^{operatorname{tr}A}neq0$. On the other hand, if $A$ is diagonalizable, then it is similar to a diagonal matrix$$begin{bmatrix}d_1&0&0&ldots&0\0&d_2&0&ldots&0\0&0&d_3&ldots&0\vdots&vdots&vdots&ddots&vdots\0&0&0&ldots&d_nend{bmatrix}.$$Then $A$ is non-singular if and only if every $d_k$ is non--zero. So, let $lambda_k$ be a logarithm of $d_k$ and$$expleft(begin{bmatrix}lambda_1&0&0&ldots&0\0&lambda_2&0&ldots&0\0&0&lambda_3&ldots&0\vdots&vdots&vdots&ddots&vdots\0&0&0&ldots&lambda_nend{bmatrix}right)=begin{bmatrix}d_1&0&0&ldots&0\0&d_2&0&ldots&0\0&0&d_3&ldots&0\vdots&vdots&vdots&ddots&vdots\0&0&0&ldots&d_nend{bmatrix}.$$So, $A$ is exponential.







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited 12 hours ago

























        answered 12 hours ago









        José Carlos SantosJosé Carlos Santos

        173k23133241




        173k23133241






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3177002%2fis-every-diagonalizable-matrix-is-an-exponential%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            El tren de la libertad Índice Antecedentes "Porque yo decido" Desarrollo de la...

            Castillo d'Acher Características Menú de navegación

            miktex-makemf did not succeed for the following reasonHow to fix the “Sorry, but C:…miktex-pdftex.exe did...