What's the output of a record cartridge playing an out-of-speed recordCannibalizing a printer, how to figure...

TGV timetables / schedules?

Watching something be written to a file live with tail

How much RAM could one put in a typical 80386 setup?

Can I make popcorn with any corn?

To string or not to string

A newer friend of my brother's gave him a load of baseball cards that are supposedly extremely valuable. Is this a scam?

Is it unprofessional to ask if a job posting on GlassDoor is real?

What is the offset in a seaplane's hull?

Font hinting is lost in Chrome-like browsers (for some languages )

How did the USSR manage to innovate in an environment characterized by government censorship and high bureaucracy?

Have astronauts in space suits ever taken selfies? If so, how?

"to be prejudice towards/against someone" vs "to be prejudiced against/towards someone"

Why was the small council so happy for Tyrion to become the Master of Coin?

Writing rule stating superpower from different root cause is bad writing

What are the differences between the usage of 'it' and 'they'?

Finding angle with pure Geometry.

How to write a macro that is braces sensitive?

Adding span tags within wp_list_pages list items

Why doesn't Newton's third law mean a person bounces back to where they started when they hit the ground?

Collect Fourier series terms

How can I make my BBEG immortal short of making them a Lich or Vampire?

Smoothness of finite-dimensional functional calculus

In Japanese, what’s the difference between “Tonari ni” (となりに) and “Tsugi” (つぎ)? When would you use one over the other?

Theorems that impeded progress



What's the output of a record cartridge playing an out-of-speed record


Cannibalizing a printer, how to figure out what some of the parts are/doWhat determines the speed of a brushless DC motorDoes the peak torque decrease at rated speed for BLDC motor?What's the relationship between ESC pwm input and output?Controlling the speed of a brushless motor with the HA13535What is the effective speed-control range of a BLDC motor?What's the relationship between DC braking torque and AC turning torque for a given current on a BLDC motorSpeed and position controle of a BLDC motor at the same timeWhat's the best starting point for rotor angle estimation for FOC?How to find the optimal speed of a BLDC motor having hall sensors? Can we change the most efficient speed through the controller?






.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty{ margin-bottom:0;
}







5












$begingroup$


I'm very interested in vinyl records and analog music, and the belt of my turntable got loose. Upon such situation it piqued my curiosity, what is the output signal at the end of the arm cartridge wires for a known waveshape if the speed is not the correct one.



Say the record was mean to play sin(wt), a pure sine wave, at 33rpm, then, because of a loosen belt or any other reason, it rotates at a different RPM, how to calculate the changes in such sine wave?



I'm not considering the filters that the cartridge might apply on the signal, whether it is a low pass, band pass, or high pass nor any other impedances that might alter the signal in any circumstance, just a supposedly ideal stylus and cartridge.










share|improve this question











$endgroup$












  • $begingroup$
    Can't you test that yourself? Run the 33 record at 33 and 45 rpm. Record both with your PC. Then time-stretch the fast one by 33/45. Calculate the difference of the signals to see what changed.
    $endgroup$
    – Thomas Weller
    4 hours ago


















5












$begingroup$


I'm very interested in vinyl records and analog music, and the belt of my turntable got loose. Upon such situation it piqued my curiosity, what is the output signal at the end of the arm cartridge wires for a known waveshape if the speed is not the correct one.



Say the record was mean to play sin(wt), a pure sine wave, at 33rpm, then, because of a loosen belt or any other reason, it rotates at a different RPM, how to calculate the changes in such sine wave?



I'm not considering the filters that the cartridge might apply on the signal, whether it is a low pass, band pass, or high pass nor any other impedances that might alter the signal in any circumstance, just a supposedly ideal stylus and cartridge.










share|improve this question











$endgroup$












  • $begingroup$
    Can't you test that yourself? Run the 33 record at 33 and 45 rpm. Record both with your PC. Then time-stretch the fast one by 33/45. Calculate the difference of the signals to see what changed.
    $endgroup$
    – Thomas Weller
    4 hours ago














5












5








5


1



$begingroup$


I'm very interested in vinyl records and analog music, and the belt of my turntable got loose. Upon such situation it piqued my curiosity, what is the output signal at the end of the arm cartridge wires for a known waveshape if the speed is not the correct one.



Say the record was mean to play sin(wt), a pure sine wave, at 33rpm, then, because of a loosen belt or any other reason, it rotates at a different RPM, how to calculate the changes in such sine wave?



I'm not considering the filters that the cartridge might apply on the signal, whether it is a low pass, band pass, or high pass nor any other impedances that might alter the signal in any circumstance, just a supposedly ideal stylus and cartridge.










share|improve this question











$endgroup$




I'm very interested in vinyl records and analog music, and the belt of my turntable got loose. Upon such situation it piqued my curiosity, what is the output signal at the end of the arm cartridge wires for a known waveshape if the speed is not the correct one.



Say the record was mean to play sin(wt), a pure sine wave, at 33rpm, then, because of a loosen belt or any other reason, it rotates at a different RPM, how to calculate the changes in such sine wave?



I'm not considering the filters that the cartridge might apply on the signal, whether it is a low pass, band pass, or high pass nor any other impedances that might alter the signal in any circumstance, just a supposedly ideal stylus and cartridge.







brushless-dc-motor






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited 8 hours ago









user207421

7961617




7961617










asked yesterday









Gabriel SantosGabriel Santos

363




363












  • $begingroup$
    Can't you test that yourself? Run the 33 record at 33 and 45 rpm. Record both with your PC. Then time-stretch the fast one by 33/45. Calculate the difference of the signals to see what changed.
    $endgroup$
    – Thomas Weller
    4 hours ago


















  • $begingroup$
    Can't you test that yourself? Run the 33 record at 33 and 45 rpm. Record both with your PC. Then time-stretch the fast one by 33/45. Calculate the difference of the signals to see what changed.
    $endgroup$
    – Thomas Weller
    4 hours ago
















$begingroup$
Can't you test that yourself? Run the 33 record at 33 and 45 rpm. Record both with your PC. Then time-stretch the fast one by 33/45. Calculate the difference of the signals to see what changed.
$endgroup$
– Thomas Weller
4 hours ago




$begingroup$
Can't you test that yourself? Run the 33 record at 33 and 45 rpm. Record both with your PC. Then time-stretch the fast one by 33/45. Calculate the difference of the signals to see what changed.
$endgroup$
– Thomas Weller
4 hours ago










6 Answers
6






active

oldest

votes


















11












$begingroup$

Grooves are cut with frequency correction according to RIAA equalization. Playing the record off with wrong speed increases all frequencies by the same factor (corresponding to a shift left/right on the frequency axis of the doubly logarithmic transfer function diagram). Since the frequency correction is not a straight line, this does not just result in a frequency shift but also in an uneven frequency response due to recording and replaying correction no longer being proper inverses.



In addition, the equalization is done in order to reduce excessive signal amplitudes on stylus and pickup. Counteracting this by wrong speed may lead to either excessive amplitudes (electrical or mechanical) or too low signals overlaid with a relatively higher noise floor.






share|improve this answer









$endgroup$









  • 2




    $begingroup$
    +1 Bingo! This is the best answer for someone "...very interested in vinyl records and analog music."
    $endgroup$
    – uhoh
    20 hours ago








  • 1




    $begingroup$
    Far and away the best answer. (As @uhoh says!)
    $endgroup$
    – Fattie
    9 hours ago



















9












$begingroup$


Say the record was mean to play sin(wt), a pure sine wave, at 33rpm, then, because of a loosen belt or any other reason, it rotates at a different RPM, how to calculate the changes in such sine wave?




The pitch and tempo will change in proportion to the speed change. At 33 RPM it would already be musically flat as the correct speed is 331/3 RPM. A 1 kHz test tone - common on test records - would, at 33 RPM, give off $ frac {33}{33.33} text {kHz} $.



The sinewave would remain a sinewave but stretched in time and, therefore, a lower pitch.






share|improve this answer











$endgroup$













  • $begingroup$
    What happens to the pitch is obvious, but it is not at all clear how the phase and amplitude responds. The wiggles of the groove feed into a mechanical system with both elastic and inertial parts, and somewhere in that system either the motion or the position is transduced to (I suppose, usually) voltage. Immediately I suppose the output signal ends up being some combination of the first and second derivatives of the groove position, but the coefficients will determine how the phase/amplitude changes differ at different frequencies.
    $endgroup$
    – Henning Makholm
    11 hours ago



















5












$begingroup$

Changing the speed of the platter simply affects how fast the groove is moving under the needle, nothing else.



A sine wave with the time axis compressed or expanded is still a sine wave. In fact, since the groove is a direct mechanical representation of the original complex waveform, you still get the same waveform simply compressed or expanded in time.






share|improve this answer









$endgroup$













  • $begingroup$
    Right, agreed, in the ideal case a a sine wave of same amplitude, but with a diferent frequency, right? The point is for a sin(wt), how the change of rotation speed will affect the frequency?
    $endgroup$
    – Gabriel Santos
    yesterday






  • 3




    $begingroup$
    It's linear -- double the speed means double the frequency. That's what compressing the time axis means.
    $endgroup$
    – Dave Tweed
    yesterday










  • $begingroup$
    Is it clear that the amplitude will remain unchanged? Depending on technology the pickup might measure either the position of the needle (relative to the pickup arm) or its lateral speed or perhaps even its acceleration, or some combination of these. The amplitude of those signals will react differently to a slowdown.
    $endgroup$
    – Henning Makholm
    11 hours ago










  • $begingroup$
    @HenningMakholm: If it does any of those things without proper compensation, then that pickup will have serious frequency response issues, even when played at the correct speed. So yes, we can assume that changing the groove speed will not affect that.
    $endgroup$
    – Dave Tweed
    10 hours ago










  • $begingroup$
    @DaveTweed: In order to produce a signal at all it will have to measure at least one of position, speed and acceleration. Your response leaves me none the wiser about which of those the output is supposed to correspond to. (I can figure out for myself that if it does something different from the standard, compensation will be needed. This insight does not tell me what the standard is).
    $endgroup$
    – Henning Makholm
    10 hours ago





















4












$begingroup$

To really simplify, a record has wiggles in the groove that correspond to the recorded sound pressure. (This ignores stereo, and any companding, but it answers your question).



Events are recorded onto that wiggly grove as they happen -- you can think of the groove as a picture of the sound, with the time domain turned into events happening as the needle follows the groove.



If you play the record slower, all the events happen more slowly -- the singer sings slower and deeper, the orchestra does too, etc. Speeding it up does the opposite -- a normal recording, sped up, sounds like a hyperactive chipmunk.






share|improve this answer











$endgroup$









  • 2




    $begingroup$
    I was surprised when I first learned how records work. It's so analog that it's amazing it works at all.
    $endgroup$
    – Toor
    yesterday






  • 2




    $begingroup$
    @Toor And where it doesn't is exactly why the vinyl crowd are wrong on all levels. The reason older recordings are bass-light is to stop the player needle being kicked so hard it leaves the record. Because motors never spin round perfectly linearly and the record is never perfectly centred, you get the distinctive "wow" of record players. And even after that, the electronics can't give you the same signal-to-noise as CDs. None of this is opinions - it's measurable. Basically it was the best they could design at the time, and it was very clever, but its time is past.
    $endgroup$
    – Graham
    17 hours ago



















0












$begingroup$

I have practical experience with this--record players with variable speed drives used to exist. These were specialty systems intended for blind people--they allowed the listener to speed up the records. They were made variable because not everyone wanted the same speed.



Obviously, for music this would be insane but these units were intended for playing voice--magazines read aloud onto special 8 1/3 rpm 9" flexible plastic records. They were not durable at all (but neither are magazines) but did their job at a much lower cost than other technologies of the day. Other than the variable speed drive, the low speed settings (their highest was 33 1/3), and the ability to survive being mailed as is they were ordinary players.






share|improve this answer









$endgroup$













  • $begingroup$
    Other use for variable speed drives: 1) to play along, tune the whole orchestra to match your personal instrument
    $endgroup$
    – DJohnM
    18 hours ago










  • $begingroup$
    @DJohn Also popular for dance teachers. They could dial down the speed while the class got to grips with the moves.
    $endgroup$
    – Graham
    17 hours ago












  • $begingroup$
    DJs use variable-speed players too, to match the tempo (beat) between records. Players like the Technics SL 1200 were/are popular among that crowd.
    $endgroup$
    – Hobbes
    5 hours ago





















0












$begingroup$

The output voltage of record cartridges is given at 1KHz at some standard velocity of the needle.



Often 5 millivolts output at 5 centimeters per second needle movement. This would be for MOVNG-MAGNET, with thousands of ohms because of the very tiny wires in the FIXED coil.
The high resistance causes a high random thermal electron noise floor.



The lowest noise cartridges are MOVING_COIL, often with resistance under 10 ohms.



But serious amplification, at low noise, and low VDD trash injection, and thorough shielding, is needed. The output voltage is often 0.2 millivolts or even less,
at that stated needle velocity, at 1KHz.



[edit] Some RIAA preamplifiers use common-source JFET amplifiers, and those type of gain stages have ZERO power supply rejection. Thus large RC filters are needed for VDD inputs, and regulators are SHUNT designs, with approximately 1nanoVolt/rootHertz noise density.






share|improve this answer











$endgroup$














    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["\$", "\$"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("schematics", function () {
    StackExchange.schematics.init();
    });
    }, "cicuitlab");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "135"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: false,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: null,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2felectronics.stackexchange.com%2fquestions%2f431010%2fwhats-the-output-of-a-record-cartridge-playing-an-out-of-speed-record%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    6 Answers
    6






    active

    oldest

    votes








    6 Answers
    6






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    11












    $begingroup$

    Grooves are cut with frequency correction according to RIAA equalization. Playing the record off with wrong speed increases all frequencies by the same factor (corresponding to a shift left/right on the frequency axis of the doubly logarithmic transfer function diagram). Since the frequency correction is not a straight line, this does not just result in a frequency shift but also in an uneven frequency response due to recording and replaying correction no longer being proper inverses.



    In addition, the equalization is done in order to reduce excessive signal amplitudes on stylus and pickup. Counteracting this by wrong speed may lead to either excessive amplitudes (electrical or mechanical) or too low signals overlaid with a relatively higher noise floor.






    share|improve this answer









    $endgroup$









    • 2




      $begingroup$
      +1 Bingo! This is the best answer for someone "...very interested in vinyl records and analog music."
      $endgroup$
      – uhoh
      20 hours ago








    • 1




      $begingroup$
      Far and away the best answer. (As @uhoh says!)
      $endgroup$
      – Fattie
      9 hours ago
















    11












    $begingroup$

    Grooves are cut with frequency correction according to RIAA equalization. Playing the record off with wrong speed increases all frequencies by the same factor (corresponding to a shift left/right on the frequency axis of the doubly logarithmic transfer function diagram). Since the frequency correction is not a straight line, this does not just result in a frequency shift but also in an uneven frequency response due to recording and replaying correction no longer being proper inverses.



    In addition, the equalization is done in order to reduce excessive signal amplitudes on stylus and pickup. Counteracting this by wrong speed may lead to either excessive amplitudes (electrical or mechanical) or too low signals overlaid with a relatively higher noise floor.






    share|improve this answer









    $endgroup$









    • 2




      $begingroup$
      +1 Bingo! This is the best answer for someone "...very interested in vinyl records and analog music."
      $endgroup$
      – uhoh
      20 hours ago








    • 1




      $begingroup$
      Far and away the best answer. (As @uhoh says!)
      $endgroup$
      – Fattie
      9 hours ago














    11












    11








    11





    $begingroup$

    Grooves are cut with frequency correction according to RIAA equalization. Playing the record off with wrong speed increases all frequencies by the same factor (corresponding to a shift left/right on the frequency axis of the doubly logarithmic transfer function diagram). Since the frequency correction is not a straight line, this does not just result in a frequency shift but also in an uneven frequency response due to recording and replaying correction no longer being proper inverses.



    In addition, the equalization is done in order to reduce excessive signal amplitudes on stylus and pickup. Counteracting this by wrong speed may lead to either excessive amplitudes (electrical or mechanical) or too low signals overlaid with a relatively higher noise floor.






    share|improve this answer









    $endgroup$



    Grooves are cut with frequency correction according to RIAA equalization. Playing the record off with wrong speed increases all frequencies by the same factor (corresponding to a shift left/right on the frequency axis of the doubly logarithmic transfer function diagram). Since the frequency correction is not a straight line, this does not just result in a frequency shift but also in an uneven frequency response due to recording and replaying correction no longer being proper inverses.



    In addition, the equalization is done in order to reduce excessive signal amplitudes on stylus and pickup. Counteracting this by wrong speed may lead to either excessive amplitudes (electrical or mechanical) or too low signals overlaid with a relatively higher noise floor.







    share|improve this answer












    share|improve this answer



    share|improve this answer










    answered yesterday







    user217611















    • 2




      $begingroup$
      +1 Bingo! This is the best answer for someone "...very interested in vinyl records and analog music."
      $endgroup$
      – uhoh
      20 hours ago








    • 1




      $begingroup$
      Far and away the best answer. (As @uhoh says!)
      $endgroup$
      – Fattie
      9 hours ago














    • 2




      $begingroup$
      +1 Bingo! This is the best answer for someone "...very interested in vinyl records and analog music."
      $endgroup$
      – uhoh
      20 hours ago








    • 1




      $begingroup$
      Far and away the best answer. (As @uhoh says!)
      $endgroup$
      – Fattie
      9 hours ago








    2




    2




    $begingroup$
    +1 Bingo! This is the best answer for someone "...very interested in vinyl records and analog music."
    $endgroup$
    – uhoh
    20 hours ago






    $begingroup$
    +1 Bingo! This is the best answer for someone "...very interested in vinyl records and analog music."
    $endgroup$
    – uhoh
    20 hours ago






    1




    1




    $begingroup$
    Far and away the best answer. (As @uhoh says!)
    $endgroup$
    – Fattie
    9 hours ago




    $begingroup$
    Far and away the best answer. (As @uhoh says!)
    $endgroup$
    – Fattie
    9 hours ago













    9












    $begingroup$


    Say the record was mean to play sin(wt), a pure sine wave, at 33rpm, then, because of a loosen belt or any other reason, it rotates at a different RPM, how to calculate the changes in such sine wave?




    The pitch and tempo will change in proportion to the speed change. At 33 RPM it would already be musically flat as the correct speed is 331/3 RPM. A 1 kHz test tone - common on test records - would, at 33 RPM, give off $ frac {33}{33.33} text {kHz} $.



    The sinewave would remain a sinewave but stretched in time and, therefore, a lower pitch.






    share|improve this answer











    $endgroup$













    • $begingroup$
      What happens to the pitch is obvious, but it is not at all clear how the phase and amplitude responds. The wiggles of the groove feed into a mechanical system with both elastic and inertial parts, and somewhere in that system either the motion or the position is transduced to (I suppose, usually) voltage. Immediately I suppose the output signal ends up being some combination of the first and second derivatives of the groove position, but the coefficients will determine how the phase/amplitude changes differ at different frequencies.
      $endgroup$
      – Henning Makholm
      11 hours ago
















    9












    $begingroup$


    Say the record was mean to play sin(wt), a pure sine wave, at 33rpm, then, because of a loosen belt or any other reason, it rotates at a different RPM, how to calculate the changes in such sine wave?




    The pitch and tempo will change in proportion to the speed change. At 33 RPM it would already be musically flat as the correct speed is 331/3 RPM. A 1 kHz test tone - common on test records - would, at 33 RPM, give off $ frac {33}{33.33} text {kHz} $.



    The sinewave would remain a sinewave but stretched in time and, therefore, a lower pitch.






    share|improve this answer











    $endgroup$













    • $begingroup$
      What happens to the pitch is obvious, but it is not at all clear how the phase and amplitude responds. The wiggles of the groove feed into a mechanical system with both elastic and inertial parts, and somewhere in that system either the motion or the position is transduced to (I suppose, usually) voltage. Immediately I suppose the output signal ends up being some combination of the first and second derivatives of the groove position, but the coefficients will determine how the phase/amplitude changes differ at different frequencies.
      $endgroup$
      – Henning Makholm
      11 hours ago














    9












    9








    9





    $begingroup$


    Say the record was mean to play sin(wt), a pure sine wave, at 33rpm, then, because of a loosen belt or any other reason, it rotates at a different RPM, how to calculate the changes in such sine wave?




    The pitch and tempo will change in proportion to the speed change. At 33 RPM it would already be musically flat as the correct speed is 331/3 RPM. A 1 kHz test tone - common on test records - would, at 33 RPM, give off $ frac {33}{33.33} text {kHz} $.



    The sinewave would remain a sinewave but stretched in time and, therefore, a lower pitch.






    share|improve this answer











    $endgroup$




    Say the record was mean to play sin(wt), a pure sine wave, at 33rpm, then, because of a loosen belt or any other reason, it rotates at a different RPM, how to calculate the changes in such sine wave?




    The pitch and tempo will change in proportion to the speed change. At 33 RPM it would already be musically flat as the correct speed is 331/3 RPM. A 1 kHz test tone - common on test records - would, at 33 RPM, give off $ frac {33}{33.33} text {kHz} $.



    The sinewave would remain a sinewave but stretched in time and, therefore, a lower pitch.







    share|improve this answer














    share|improve this answer



    share|improve this answer








    edited yesterday









    K H

    2,360215




    2,360215










    answered yesterday









    TransistorTransistor

    88.4k785189




    88.4k785189












    • $begingroup$
      What happens to the pitch is obvious, but it is not at all clear how the phase and amplitude responds. The wiggles of the groove feed into a mechanical system with both elastic and inertial parts, and somewhere in that system either the motion or the position is transduced to (I suppose, usually) voltage. Immediately I suppose the output signal ends up being some combination of the first and second derivatives of the groove position, but the coefficients will determine how the phase/amplitude changes differ at different frequencies.
      $endgroup$
      – Henning Makholm
      11 hours ago


















    • $begingroup$
      What happens to the pitch is obvious, but it is not at all clear how the phase and amplitude responds. The wiggles of the groove feed into a mechanical system with both elastic and inertial parts, and somewhere in that system either the motion or the position is transduced to (I suppose, usually) voltage. Immediately I suppose the output signal ends up being some combination of the first and second derivatives of the groove position, but the coefficients will determine how the phase/amplitude changes differ at different frequencies.
      $endgroup$
      – Henning Makholm
      11 hours ago
















    $begingroup$
    What happens to the pitch is obvious, but it is not at all clear how the phase and amplitude responds. The wiggles of the groove feed into a mechanical system with both elastic and inertial parts, and somewhere in that system either the motion or the position is transduced to (I suppose, usually) voltage. Immediately I suppose the output signal ends up being some combination of the first and second derivatives of the groove position, but the coefficients will determine how the phase/amplitude changes differ at different frequencies.
    $endgroup$
    – Henning Makholm
    11 hours ago




    $begingroup$
    What happens to the pitch is obvious, but it is not at all clear how the phase and amplitude responds. The wiggles of the groove feed into a mechanical system with both elastic and inertial parts, and somewhere in that system either the motion or the position is transduced to (I suppose, usually) voltage. Immediately I suppose the output signal ends up being some combination of the first and second derivatives of the groove position, but the coefficients will determine how the phase/amplitude changes differ at different frequencies.
    $endgroup$
    – Henning Makholm
    11 hours ago











    5












    $begingroup$

    Changing the speed of the platter simply affects how fast the groove is moving under the needle, nothing else.



    A sine wave with the time axis compressed or expanded is still a sine wave. In fact, since the groove is a direct mechanical representation of the original complex waveform, you still get the same waveform simply compressed or expanded in time.






    share|improve this answer









    $endgroup$













    • $begingroup$
      Right, agreed, in the ideal case a a sine wave of same amplitude, but with a diferent frequency, right? The point is for a sin(wt), how the change of rotation speed will affect the frequency?
      $endgroup$
      – Gabriel Santos
      yesterday






    • 3




      $begingroup$
      It's linear -- double the speed means double the frequency. That's what compressing the time axis means.
      $endgroup$
      – Dave Tweed
      yesterday










    • $begingroup$
      Is it clear that the amplitude will remain unchanged? Depending on technology the pickup might measure either the position of the needle (relative to the pickup arm) or its lateral speed or perhaps even its acceleration, or some combination of these. The amplitude of those signals will react differently to a slowdown.
      $endgroup$
      – Henning Makholm
      11 hours ago










    • $begingroup$
      @HenningMakholm: If it does any of those things without proper compensation, then that pickup will have serious frequency response issues, even when played at the correct speed. So yes, we can assume that changing the groove speed will not affect that.
      $endgroup$
      – Dave Tweed
      10 hours ago










    • $begingroup$
      @DaveTweed: In order to produce a signal at all it will have to measure at least one of position, speed and acceleration. Your response leaves me none the wiser about which of those the output is supposed to correspond to. (I can figure out for myself that if it does something different from the standard, compensation will be needed. This insight does not tell me what the standard is).
      $endgroup$
      – Henning Makholm
      10 hours ago


















    5












    $begingroup$

    Changing the speed of the platter simply affects how fast the groove is moving under the needle, nothing else.



    A sine wave with the time axis compressed or expanded is still a sine wave. In fact, since the groove is a direct mechanical representation of the original complex waveform, you still get the same waveform simply compressed or expanded in time.






    share|improve this answer









    $endgroup$













    • $begingroup$
      Right, agreed, in the ideal case a a sine wave of same amplitude, but with a diferent frequency, right? The point is for a sin(wt), how the change of rotation speed will affect the frequency?
      $endgroup$
      – Gabriel Santos
      yesterday






    • 3




      $begingroup$
      It's linear -- double the speed means double the frequency. That's what compressing the time axis means.
      $endgroup$
      – Dave Tweed
      yesterday










    • $begingroup$
      Is it clear that the amplitude will remain unchanged? Depending on technology the pickup might measure either the position of the needle (relative to the pickup arm) or its lateral speed or perhaps even its acceleration, or some combination of these. The amplitude of those signals will react differently to a slowdown.
      $endgroup$
      – Henning Makholm
      11 hours ago










    • $begingroup$
      @HenningMakholm: If it does any of those things without proper compensation, then that pickup will have serious frequency response issues, even when played at the correct speed. So yes, we can assume that changing the groove speed will not affect that.
      $endgroup$
      – Dave Tweed
      10 hours ago










    • $begingroup$
      @DaveTweed: In order to produce a signal at all it will have to measure at least one of position, speed and acceleration. Your response leaves me none the wiser about which of those the output is supposed to correspond to. (I can figure out for myself that if it does something different from the standard, compensation will be needed. This insight does not tell me what the standard is).
      $endgroup$
      – Henning Makholm
      10 hours ago
















    5












    5








    5





    $begingroup$

    Changing the speed of the platter simply affects how fast the groove is moving under the needle, nothing else.



    A sine wave with the time axis compressed or expanded is still a sine wave. In fact, since the groove is a direct mechanical representation of the original complex waveform, you still get the same waveform simply compressed or expanded in time.






    share|improve this answer









    $endgroup$



    Changing the speed of the platter simply affects how fast the groove is moving under the needle, nothing else.



    A sine wave with the time axis compressed or expanded is still a sine wave. In fact, since the groove is a direct mechanical representation of the original complex waveform, you still get the same waveform simply compressed or expanded in time.







    share|improve this answer












    share|improve this answer



    share|improve this answer










    answered yesterday









    Dave TweedDave Tweed

    123k9152266




    123k9152266












    • $begingroup$
      Right, agreed, in the ideal case a a sine wave of same amplitude, but with a diferent frequency, right? The point is for a sin(wt), how the change of rotation speed will affect the frequency?
      $endgroup$
      – Gabriel Santos
      yesterday






    • 3




      $begingroup$
      It's linear -- double the speed means double the frequency. That's what compressing the time axis means.
      $endgroup$
      – Dave Tweed
      yesterday










    • $begingroup$
      Is it clear that the amplitude will remain unchanged? Depending on technology the pickup might measure either the position of the needle (relative to the pickup arm) or its lateral speed or perhaps even its acceleration, or some combination of these. The amplitude of those signals will react differently to a slowdown.
      $endgroup$
      – Henning Makholm
      11 hours ago










    • $begingroup$
      @HenningMakholm: If it does any of those things without proper compensation, then that pickup will have serious frequency response issues, even when played at the correct speed. So yes, we can assume that changing the groove speed will not affect that.
      $endgroup$
      – Dave Tweed
      10 hours ago










    • $begingroup$
      @DaveTweed: In order to produce a signal at all it will have to measure at least one of position, speed and acceleration. Your response leaves me none the wiser about which of those the output is supposed to correspond to. (I can figure out for myself that if it does something different from the standard, compensation will be needed. This insight does not tell me what the standard is).
      $endgroup$
      – Henning Makholm
      10 hours ago




















    • $begingroup$
      Right, agreed, in the ideal case a a sine wave of same amplitude, but with a diferent frequency, right? The point is for a sin(wt), how the change of rotation speed will affect the frequency?
      $endgroup$
      – Gabriel Santos
      yesterday






    • 3




      $begingroup$
      It's linear -- double the speed means double the frequency. That's what compressing the time axis means.
      $endgroup$
      – Dave Tweed
      yesterday










    • $begingroup$
      Is it clear that the amplitude will remain unchanged? Depending on technology the pickup might measure either the position of the needle (relative to the pickup arm) or its lateral speed or perhaps even its acceleration, or some combination of these. The amplitude of those signals will react differently to a slowdown.
      $endgroup$
      – Henning Makholm
      11 hours ago










    • $begingroup$
      @HenningMakholm: If it does any of those things without proper compensation, then that pickup will have serious frequency response issues, even when played at the correct speed. So yes, we can assume that changing the groove speed will not affect that.
      $endgroup$
      – Dave Tweed
      10 hours ago










    • $begingroup$
      @DaveTweed: In order to produce a signal at all it will have to measure at least one of position, speed and acceleration. Your response leaves me none the wiser about which of those the output is supposed to correspond to. (I can figure out for myself that if it does something different from the standard, compensation will be needed. This insight does not tell me what the standard is).
      $endgroup$
      – Henning Makholm
      10 hours ago


















    $begingroup$
    Right, agreed, in the ideal case a a sine wave of same amplitude, but with a diferent frequency, right? The point is for a sin(wt), how the change of rotation speed will affect the frequency?
    $endgroup$
    – Gabriel Santos
    yesterday




    $begingroup$
    Right, agreed, in the ideal case a a sine wave of same amplitude, but with a diferent frequency, right? The point is for a sin(wt), how the change of rotation speed will affect the frequency?
    $endgroup$
    – Gabriel Santos
    yesterday




    3




    3




    $begingroup$
    It's linear -- double the speed means double the frequency. That's what compressing the time axis means.
    $endgroup$
    – Dave Tweed
    yesterday




    $begingroup$
    It's linear -- double the speed means double the frequency. That's what compressing the time axis means.
    $endgroup$
    – Dave Tweed
    yesterday












    $begingroup$
    Is it clear that the amplitude will remain unchanged? Depending on technology the pickup might measure either the position of the needle (relative to the pickup arm) or its lateral speed or perhaps even its acceleration, or some combination of these. The amplitude of those signals will react differently to a slowdown.
    $endgroup$
    – Henning Makholm
    11 hours ago




    $begingroup$
    Is it clear that the amplitude will remain unchanged? Depending on technology the pickup might measure either the position of the needle (relative to the pickup arm) or its lateral speed or perhaps even its acceleration, or some combination of these. The amplitude of those signals will react differently to a slowdown.
    $endgroup$
    – Henning Makholm
    11 hours ago












    $begingroup$
    @HenningMakholm: If it does any of those things without proper compensation, then that pickup will have serious frequency response issues, even when played at the correct speed. So yes, we can assume that changing the groove speed will not affect that.
    $endgroup$
    – Dave Tweed
    10 hours ago




    $begingroup$
    @HenningMakholm: If it does any of those things without proper compensation, then that pickup will have serious frequency response issues, even when played at the correct speed. So yes, we can assume that changing the groove speed will not affect that.
    $endgroup$
    – Dave Tweed
    10 hours ago












    $begingroup$
    @DaveTweed: In order to produce a signal at all it will have to measure at least one of position, speed and acceleration. Your response leaves me none the wiser about which of those the output is supposed to correspond to. (I can figure out for myself that if it does something different from the standard, compensation will be needed. This insight does not tell me what the standard is).
    $endgroup$
    – Henning Makholm
    10 hours ago






    $begingroup$
    @DaveTweed: In order to produce a signal at all it will have to measure at least one of position, speed and acceleration. Your response leaves me none the wiser about which of those the output is supposed to correspond to. (I can figure out for myself that if it does something different from the standard, compensation will be needed. This insight does not tell me what the standard is).
    $endgroup$
    – Henning Makholm
    10 hours ago













    4












    $begingroup$

    To really simplify, a record has wiggles in the groove that correspond to the recorded sound pressure. (This ignores stereo, and any companding, but it answers your question).



    Events are recorded onto that wiggly grove as they happen -- you can think of the groove as a picture of the sound, with the time domain turned into events happening as the needle follows the groove.



    If you play the record slower, all the events happen more slowly -- the singer sings slower and deeper, the orchestra does too, etc. Speeding it up does the opposite -- a normal recording, sped up, sounds like a hyperactive chipmunk.






    share|improve this answer











    $endgroup$









    • 2




      $begingroup$
      I was surprised when I first learned how records work. It's so analog that it's amazing it works at all.
      $endgroup$
      – Toor
      yesterday






    • 2




      $begingroup$
      @Toor And where it doesn't is exactly why the vinyl crowd are wrong on all levels. The reason older recordings are bass-light is to stop the player needle being kicked so hard it leaves the record. Because motors never spin round perfectly linearly and the record is never perfectly centred, you get the distinctive "wow" of record players. And even after that, the electronics can't give you the same signal-to-noise as CDs. None of this is opinions - it's measurable. Basically it was the best they could design at the time, and it was very clever, but its time is past.
      $endgroup$
      – Graham
      17 hours ago
















    4












    $begingroup$

    To really simplify, a record has wiggles in the groove that correspond to the recorded sound pressure. (This ignores stereo, and any companding, but it answers your question).



    Events are recorded onto that wiggly grove as they happen -- you can think of the groove as a picture of the sound, with the time domain turned into events happening as the needle follows the groove.



    If you play the record slower, all the events happen more slowly -- the singer sings slower and deeper, the orchestra does too, etc. Speeding it up does the opposite -- a normal recording, sped up, sounds like a hyperactive chipmunk.






    share|improve this answer











    $endgroup$









    • 2




      $begingroup$
      I was surprised when I first learned how records work. It's so analog that it's amazing it works at all.
      $endgroup$
      – Toor
      yesterday






    • 2




      $begingroup$
      @Toor And where it doesn't is exactly why the vinyl crowd are wrong on all levels. The reason older recordings are bass-light is to stop the player needle being kicked so hard it leaves the record. Because motors never spin round perfectly linearly and the record is never perfectly centred, you get the distinctive "wow" of record players. And even after that, the electronics can't give you the same signal-to-noise as CDs. None of this is opinions - it's measurable. Basically it was the best they could design at the time, and it was very clever, but its time is past.
      $endgroup$
      – Graham
      17 hours ago














    4












    4








    4





    $begingroup$

    To really simplify, a record has wiggles in the groove that correspond to the recorded sound pressure. (This ignores stereo, and any companding, but it answers your question).



    Events are recorded onto that wiggly grove as they happen -- you can think of the groove as a picture of the sound, with the time domain turned into events happening as the needle follows the groove.



    If you play the record slower, all the events happen more slowly -- the singer sings slower and deeper, the orchestra does too, etc. Speeding it up does the opposite -- a normal recording, sped up, sounds like a hyperactive chipmunk.






    share|improve this answer











    $endgroup$



    To really simplify, a record has wiggles in the groove that correspond to the recorded sound pressure. (This ignores stereo, and any companding, but it answers your question).



    Events are recorded onto that wiggly grove as they happen -- you can think of the groove as a picture of the sound, with the time domain turned into events happening as the needle follows the groove.



    If you play the record slower, all the events happen more slowly -- the singer sings slower and deeper, the orchestra does too, etc. Speeding it up does the opposite -- a normal recording, sped up, sounds like a hyperactive chipmunk.







    share|improve this answer














    share|improve this answer



    share|improve this answer








    edited yesterday

























    answered yesterday









    TimWescottTimWescott

    6,6441416




    6,6441416








    • 2




      $begingroup$
      I was surprised when I first learned how records work. It's so analog that it's amazing it works at all.
      $endgroup$
      – Toor
      yesterday






    • 2




      $begingroup$
      @Toor And where it doesn't is exactly why the vinyl crowd are wrong on all levels. The reason older recordings are bass-light is to stop the player needle being kicked so hard it leaves the record. Because motors never spin round perfectly linearly and the record is never perfectly centred, you get the distinctive "wow" of record players. And even after that, the electronics can't give you the same signal-to-noise as CDs. None of this is opinions - it's measurable. Basically it was the best they could design at the time, and it was very clever, but its time is past.
      $endgroup$
      – Graham
      17 hours ago














    • 2




      $begingroup$
      I was surprised when I first learned how records work. It's so analog that it's amazing it works at all.
      $endgroup$
      – Toor
      yesterday






    • 2




      $begingroup$
      @Toor And where it doesn't is exactly why the vinyl crowd are wrong on all levels. The reason older recordings are bass-light is to stop the player needle being kicked so hard it leaves the record. Because motors never spin round perfectly linearly and the record is never perfectly centred, you get the distinctive "wow" of record players. And even after that, the electronics can't give you the same signal-to-noise as CDs. None of this is opinions - it's measurable. Basically it was the best they could design at the time, and it was very clever, but its time is past.
      $endgroup$
      – Graham
      17 hours ago








    2




    2




    $begingroup$
    I was surprised when I first learned how records work. It's so analog that it's amazing it works at all.
    $endgroup$
    – Toor
    yesterday




    $begingroup$
    I was surprised when I first learned how records work. It's so analog that it's amazing it works at all.
    $endgroup$
    – Toor
    yesterday




    2




    2




    $begingroup$
    @Toor And where it doesn't is exactly why the vinyl crowd are wrong on all levels. The reason older recordings are bass-light is to stop the player needle being kicked so hard it leaves the record. Because motors never spin round perfectly linearly and the record is never perfectly centred, you get the distinctive "wow" of record players. And even after that, the electronics can't give you the same signal-to-noise as CDs. None of this is opinions - it's measurable. Basically it was the best they could design at the time, and it was very clever, but its time is past.
    $endgroup$
    – Graham
    17 hours ago




    $begingroup$
    @Toor And where it doesn't is exactly why the vinyl crowd are wrong on all levels. The reason older recordings are bass-light is to stop the player needle being kicked so hard it leaves the record. Because motors never spin round perfectly linearly and the record is never perfectly centred, you get the distinctive "wow" of record players. And even after that, the electronics can't give you the same signal-to-noise as CDs. None of this is opinions - it's measurable. Basically it was the best they could design at the time, and it was very clever, but its time is past.
    $endgroup$
    – Graham
    17 hours ago











    0












    $begingroup$

    I have practical experience with this--record players with variable speed drives used to exist. These were specialty systems intended for blind people--they allowed the listener to speed up the records. They were made variable because not everyone wanted the same speed.



    Obviously, for music this would be insane but these units were intended for playing voice--magazines read aloud onto special 8 1/3 rpm 9" flexible plastic records. They were not durable at all (but neither are magazines) but did their job at a much lower cost than other technologies of the day. Other than the variable speed drive, the low speed settings (their highest was 33 1/3), and the ability to survive being mailed as is they were ordinary players.






    share|improve this answer









    $endgroup$













    • $begingroup$
      Other use for variable speed drives: 1) to play along, tune the whole orchestra to match your personal instrument
      $endgroup$
      – DJohnM
      18 hours ago










    • $begingroup$
      @DJohn Also popular for dance teachers. They could dial down the speed while the class got to grips with the moves.
      $endgroup$
      – Graham
      17 hours ago












    • $begingroup$
      DJs use variable-speed players too, to match the tempo (beat) between records. Players like the Technics SL 1200 were/are popular among that crowd.
      $endgroup$
      – Hobbes
      5 hours ago


















    0












    $begingroup$

    I have practical experience with this--record players with variable speed drives used to exist. These were specialty systems intended for blind people--they allowed the listener to speed up the records. They were made variable because not everyone wanted the same speed.



    Obviously, for music this would be insane but these units were intended for playing voice--magazines read aloud onto special 8 1/3 rpm 9" flexible plastic records. They were not durable at all (but neither are magazines) but did their job at a much lower cost than other technologies of the day. Other than the variable speed drive, the low speed settings (their highest was 33 1/3), and the ability to survive being mailed as is they were ordinary players.






    share|improve this answer









    $endgroup$













    • $begingroup$
      Other use for variable speed drives: 1) to play along, tune the whole orchestra to match your personal instrument
      $endgroup$
      – DJohnM
      18 hours ago










    • $begingroup$
      @DJohn Also popular for dance teachers. They could dial down the speed while the class got to grips with the moves.
      $endgroup$
      – Graham
      17 hours ago












    • $begingroup$
      DJs use variable-speed players too, to match the tempo (beat) between records. Players like the Technics SL 1200 were/are popular among that crowd.
      $endgroup$
      – Hobbes
      5 hours ago
















    0












    0








    0





    $begingroup$

    I have practical experience with this--record players with variable speed drives used to exist. These were specialty systems intended for blind people--they allowed the listener to speed up the records. They were made variable because not everyone wanted the same speed.



    Obviously, for music this would be insane but these units were intended for playing voice--magazines read aloud onto special 8 1/3 rpm 9" flexible plastic records. They were not durable at all (but neither are magazines) but did their job at a much lower cost than other technologies of the day. Other than the variable speed drive, the low speed settings (their highest was 33 1/3), and the ability to survive being mailed as is they were ordinary players.






    share|improve this answer









    $endgroup$



    I have practical experience with this--record players with variable speed drives used to exist. These were specialty systems intended for blind people--they allowed the listener to speed up the records. They were made variable because not everyone wanted the same speed.



    Obviously, for music this would be insane but these units were intended for playing voice--magazines read aloud onto special 8 1/3 rpm 9" flexible plastic records. They were not durable at all (but neither are magazines) but did their job at a much lower cost than other technologies of the day. Other than the variable speed drive, the low speed settings (their highest was 33 1/3), and the ability to survive being mailed as is they were ordinary players.







    share|improve this answer












    share|improve this answer



    share|improve this answer










    answered 20 hours ago









    Loren PechtelLoren Pechtel

    22328




    22328












    • $begingroup$
      Other use for variable speed drives: 1) to play along, tune the whole orchestra to match your personal instrument
      $endgroup$
      – DJohnM
      18 hours ago










    • $begingroup$
      @DJohn Also popular for dance teachers. They could dial down the speed while the class got to grips with the moves.
      $endgroup$
      – Graham
      17 hours ago












    • $begingroup$
      DJs use variable-speed players too, to match the tempo (beat) between records. Players like the Technics SL 1200 were/are popular among that crowd.
      $endgroup$
      – Hobbes
      5 hours ago




















    • $begingroup$
      Other use for variable speed drives: 1) to play along, tune the whole orchestra to match your personal instrument
      $endgroup$
      – DJohnM
      18 hours ago










    • $begingroup$
      @DJohn Also popular for dance teachers. They could dial down the speed while the class got to grips with the moves.
      $endgroup$
      – Graham
      17 hours ago












    • $begingroup$
      DJs use variable-speed players too, to match the tempo (beat) between records. Players like the Technics SL 1200 were/are popular among that crowd.
      $endgroup$
      – Hobbes
      5 hours ago


















    $begingroup$
    Other use for variable speed drives: 1) to play along, tune the whole orchestra to match your personal instrument
    $endgroup$
    – DJohnM
    18 hours ago




    $begingroup$
    Other use for variable speed drives: 1) to play along, tune the whole orchestra to match your personal instrument
    $endgroup$
    – DJohnM
    18 hours ago












    $begingroup$
    @DJohn Also popular for dance teachers. They could dial down the speed while the class got to grips with the moves.
    $endgroup$
    – Graham
    17 hours ago






    $begingroup$
    @DJohn Also popular for dance teachers. They could dial down the speed while the class got to grips with the moves.
    $endgroup$
    – Graham
    17 hours ago














    $begingroup$
    DJs use variable-speed players too, to match the tempo (beat) between records. Players like the Technics SL 1200 were/are popular among that crowd.
    $endgroup$
    – Hobbes
    5 hours ago






    $begingroup$
    DJs use variable-speed players too, to match the tempo (beat) between records. Players like the Technics SL 1200 were/are popular among that crowd.
    $endgroup$
    – Hobbes
    5 hours ago













    0












    $begingroup$

    The output voltage of record cartridges is given at 1KHz at some standard velocity of the needle.



    Often 5 millivolts output at 5 centimeters per second needle movement. This would be for MOVNG-MAGNET, with thousands of ohms because of the very tiny wires in the FIXED coil.
    The high resistance causes a high random thermal electron noise floor.



    The lowest noise cartridges are MOVING_COIL, often with resistance under 10 ohms.



    But serious amplification, at low noise, and low VDD trash injection, and thorough shielding, is needed. The output voltage is often 0.2 millivolts or even less,
    at that stated needle velocity, at 1KHz.



    [edit] Some RIAA preamplifiers use common-source JFET amplifiers, and those type of gain stages have ZERO power supply rejection. Thus large RC filters are needed for VDD inputs, and regulators are SHUNT designs, with approximately 1nanoVolt/rootHertz noise density.






    share|improve this answer











    $endgroup$


















      0












      $begingroup$

      The output voltage of record cartridges is given at 1KHz at some standard velocity of the needle.



      Often 5 millivolts output at 5 centimeters per second needle movement. This would be for MOVNG-MAGNET, with thousands of ohms because of the very tiny wires in the FIXED coil.
      The high resistance causes a high random thermal electron noise floor.



      The lowest noise cartridges are MOVING_COIL, often with resistance under 10 ohms.



      But serious amplification, at low noise, and low VDD trash injection, and thorough shielding, is needed. The output voltage is often 0.2 millivolts or even less,
      at that stated needle velocity, at 1KHz.



      [edit] Some RIAA preamplifiers use common-source JFET amplifiers, and those type of gain stages have ZERO power supply rejection. Thus large RC filters are needed for VDD inputs, and regulators are SHUNT designs, with approximately 1nanoVolt/rootHertz noise density.






      share|improve this answer











      $endgroup$
















        0












        0








        0





        $begingroup$

        The output voltage of record cartridges is given at 1KHz at some standard velocity of the needle.



        Often 5 millivolts output at 5 centimeters per second needle movement. This would be for MOVNG-MAGNET, with thousands of ohms because of the very tiny wires in the FIXED coil.
        The high resistance causes a high random thermal electron noise floor.



        The lowest noise cartridges are MOVING_COIL, often with resistance under 10 ohms.



        But serious amplification, at low noise, and low VDD trash injection, and thorough shielding, is needed. The output voltage is often 0.2 millivolts or even less,
        at that stated needle velocity, at 1KHz.



        [edit] Some RIAA preamplifiers use common-source JFET amplifiers, and those type of gain stages have ZERO power supply rejection. Thus large RC filters are needed for VDD inputs, and regulators are SHUNT designs, with approximately 1nanoVolt/rootHertz noise density.






        share|improve this answer











        $endgroup$



        The output voltage of record cartridges is given at 1KHz at some standard velocity of the needle.



        Often 5 millivolts output at 5 centimeters per second needle movement. This would be for MOVNG-MAGNET, with thousands of ohms because of the very tiny wires in the FIXED coil.
        The high resistance causes a high random thermal electron noise floor.



        The lowest noise cartridges are MOVING_COIL, often with resistance under 10 ohms.



        But serious amplification, at low noise, and low VDD trash injection, and thorough shielding, is needed. The output voltage is often 0.2 millivolts or even less,
        at that stated needle velocity, at 1KHz.



        [edit] Some RIAA preamplifiers use common-source JFET amplifiers, and those type of gain stages have ZERO power supply rejection. Thus large RC filters are needed for VDD inputs, and regulators are SHUNT designs, with approximately 1nanoVolt/rootHertz noise density.







        share|improve this answer














        share|improve this answer



        share|improve this answer








        edited 19 hours ago

























        answered 20 hours ago









        analogsystemsrfanalogsystemsrf

        16k2822




        16k2822






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Electrical Engineering Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2felectronics.stackexchange.com%2fquestions%2f431010%2fwhats-the-output-of-a-record-cartridge-playing-an-out-of-speed-record%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            El tren de la libertad Índice Antecedentes "Porque yo decido" Desarrollo de la...

            Castillo d'Acher Características Menú de navegación

            miktex-makemf did not succeed for the following reasonHow to fix the “Sorry, but C:…miktex-pdftex.exe did...